
MASS JAVA Benchmarking

Autumn 2022 Term Report

Anirudh Potturi

In Partial Fulfillment of the Requirements

For the Degree of

Masters of Science

Under Guidance of Dr. Munehiro Fukuda

University of Washington

©December, 2022

Anirudh Potturi

https://orcid.org/0000-0002-9270-9628

https://orcid.org/0000-0002-9270-9628

2

Contents

List of Figures 4

1 Introduction 5

1.1 History of Agent-Based Modeling . 5

1.2 Agent-Based Modelling Toolkit Selection 6

2 Repast Simphony 7

2.1 Breadth First search . 8

2.2 Range Search . 8

2.3 MASS Base Code . 9

3 Code Analysis Tools 11

3.1 Java Static Code Analysis Tool . 11

3.2 C++ Static Code Analysis Tool . 12

4 The International Conference on Agents and Artificial Intelligence

2023 13

5 Results and Analysis 15

5.1 Breadth-First Search . 15

5.2 Range Search . 16

5.3 Java Static Code analysis Tool . 17

Acronyms 20

References 21

Appendices 22

3

4

LIST OF FIGURES

5.1 JavaCodeAnalysisTool Sample Output Part 2: Cyclomatic Complexity

of Methods . 16

5.2 JavaCodeAnalysisTool Sample Output Part 1: Basic Metrics 18

5.3 JavaCodeAnalysisTool Sample Output Part 2: Cyclomatic Complexity

of Methods . 18

5.4 JavaCodeAnalysisTool Sample Output Part 1: Count of Statements . . 19

Chapter 1

Introduction

The purpose of this paper is to provide a summary of the work performed in the

Autumn Quarter of 2022. This quarter’s goal was to develop applications using an

Agent-Based Modelling toolkit. A previous student, Vishnu Mohan, developed Eight

agent navigational patterns he identified that were commonly used and automated their

execution [1]. This work is intended to simplify the programmability and enhance the

migration capabilities of agents. Four applications were selected to apply these naviga-

tional patterns: Breadth First Search, Triangle Counting, Closest Pair of Points, and

Range Search. However, sufficient work was needed to prove that these improvements

improve the programmability and offer additional performance improvements. Vishnu

compared what is termed as Old MASS and New MASS. To further extend this work,

the same applications had to be developed using a competitor Agent-Based Modelling

Toolkit.

1.1 History of Agent-Based Modeling

The essential phase of this quarter was to dedicate time to understanding and per-

forming a literature review of Agent-Based Computations and Modelling. I thoroughly

researched and gathered resources to help me realize the importance of the work done at

The DSLab. This phase was beneficial because I was introduced to ideas like Complex

Adaptive systems and Agent-Based Simulations. I also learned the technical method-

ologies of computational models of multi-agent interactions that were first introduced

in the 1940s. Understanding the rich yet limited history of Multi-agent simulations

6

and modeling was vital to understand the underlying agent migration techniques of

the Computational Geometry applications. The agent migration patterns used were

inspired by classic concepts from areas like cellular automata theory (The Von Neu-

mann and Moore Neighborhood methods) [2], etcetera. Vishnu Mohan automated the

migration of agents to these neighboring places of agents.

1.2 Agent-Based Modelling Toolkit Selection

The first and foremost step to be done was to select an ABM Toolkit environment.

The two best and most suitable options available to us were NetLogo and Repast-3.

NetLogo uses the concept of Turtles as agents and Patches as Places. It is based on the

Logo Dialect and thus requires developers to adapt to the language. Repast-3, short

for Recursive Porous Agent Simulation Toolkit, is a collection of Three agent-based

modeling libraries: Java-based Repast J, C based Repast .NET, and Python-based

Repast Py. Repast J was a better option mainly because of the language. On further

analysis, we found that Repast Simphony is the latest development built on top of

Repast 3 with a completely new code base [3]. Repast-J was also significantly improved

with modular plug-in and use components. Thus, we proceeded to move forward and

develop the four applications using Repast Simphony.

The following sections explain the work I carried out throughout this quarter.

Chapter 2

Repast Simphony

As part of this quarter, my work with Repast Simphony was to ensure we had four ap-

plications, as mentioned. A former student, Max Wenger, worked on two applications:

Triangle Counting and Closest Pair of Points using Repast Simphony. My role with

both applications was to ensure they were in working order and touch up on anything if

necessary. I worked on refactoring this code and renaming the components for consis-

tency. The reasoning behind this will be explained later in this section. Breadth First

Search and Range Search had to be developed from scratch. We wanted to develop

these applications while trying to mimic MASS Java. For this, I first developed the

base code that took core concepts of MASS Java. In particular, the base code consisted

of Agent, Place, and Agent Manager components. The Agent Manager is essential to

the Repast Simphony applications we developed. The base code was implemented from

scratch since it was not readily available. As the name suggests, the agent manager is

responsible for managing operations like agent creation, agent termination, and con-

trolling agent migration. The Agent component creates objects that will act as the

agents in applications. The Place component is used to develop the space and acts

as a point of invocation of method calls to the AgentManager. Implementing features

of MASS Java in Repast Simphony for each application requires slight modifications

to this base code. The motivation behind developing this code is to streamline future

work in the group with this toolkit.

8

2.1 Breadth First search

This was the first piece of development work for this quarter. The idea of developing

the MASS Base code was a result of this application. Breadth First Search, as we know,

is a widely used Tree traversal technique with real-world applications like Peer-to-peer

networks.

All Repast Simphony classes require a class dedicated to building the application’s

context. In this application, The BFSBuilder is the component that does it (see Ap-

pendix A: BFSApp). It adds objects of the graph into the context, which will later be

displayed on the GUI. GraphGen is the component that generates a graph and neigh-

bors of each node of the graph. In this case, Each Place acts as the node of the graph,

and each Place has neighboring places. Each Place is initially assigned an Agent that

belongs there. At the beginning of the Simulation, only the Agent at Place 0 is active.

All other agents are inactive, meaning they cannot migrate or perform any activity.

First, Agent 0 looks for its neighboring places and picks one to which it will migrate

and return. On completion of this, the Agent triggers the Agent at the Destination

place to be activated. This activation, of course, is only done by AgentManager. If

more places have yet to be visited, a scheduled method in each Place triggers the Agent

residing in that Place to migrate to a neighboring Place. Finally, with no more places

to be explored, the Simulation is halted.

2.2 Range Search

Range Search is an application with real-world uses in Geographical Information Sys-

tems. This Computational Geometry problem uses a space over which points are

distributed. Users can query for all the points in the range of their choice’s maximum

and minimum - x and y coordinates.

The context builder for this application resides in the RangeSearch component (see

Appendix B: RangeSearch). This component is responsible for Reading the input file,

9

Constructing the KDTree, and, lastly, building the Context. The AgentManager in this

application initiates the search for nodes in the tree within the query range. Vishnu

Mohan’s Range Search had to be reverse-engineered for this application to be as close

as possible to that of the MASS Java version. This meant that the underlying code of

MASS had to be understood and reimplemented for Repast Simphony. This further

extended the MASS Base Code for this toolkit.

This application mimics the working of the MASS Version. An agent first starts

at the root node. If the coordinates’ bounds are on the node’s left child, the agent

continues traversing, i.e., migrating. Every time a point lies on the right child node,

AgentManager triggers a new agent to take this path and traverse. To better under-

stand the number of agents used for the traversal, a method of counting the number of

agents required in the simulation was added. A critical difference between the Repast

and MASS versions is that while MASS spawns a new agent, Repast Simphony acti-

vates an agent. Thus, every time an agent was activated in the application, the counter

was incremented by one.

2.3 MASS Base Code

The MASS Base Code extracts all the structural elements developed to mimic MASS

in Repast Simphony. This piece of work is derived from the previous two applications

developed. It contains components allowing future users to reuse existing code and

focus on algorithm implementations only. The ApplicationBuilder component (see

Appendix C: MASS Base Code) is a template component that provides a basic structure

of context building in Repast. While users may choose to develop this component from

scratch independently, it is still available for those who wish to simplify their work.

The FileInputReader component is re-engineered from existing work done by former

students in The DSLab. This component is modified for Repast to read input data files

and populate Places and Vertices. A Place provides an environment for an Agent and

part of a graph or a problem to reside in. The Vertex component is used to construct

10

graphs. Every vertex of a graph or application resides in a Place. Each place is also

updated each time an agent visits the place with the agent’s footprint. This footprint

can be beneficial when building applications where an agent may want to know the

most recent agent that visited the place. This can also help in enhancing migrations

where an agent does not visit a place it just visited. To be precise, an agent may be

terminated if it realizes it has entered a cycle of node/nodes.

The MASS Base Code is currently being updated with more features that have

been identified as necessary.

Chapter 3

Code Analysis Tools

3.1 Java Static Code Analysis Tool

The Java Static Code Analysis Tool builds upon the work done by a former High

School Intern, Kent Fukuda. Kent developed a tool called LoC, which stands for Line

of Code. The tool can read an input file, identify whether it is a Java or C++ file

and read each line. The tool identified the number of lines in the code, the number of

comments, and the number of blank lines in each file without using a Parser, which

was impressive. However, to further analyze the contents of each file and identify

variables and methods, we needed a Parser that could accomplish the goal. For this

tool, JavaParser was used to parse classes written in Java. JavaParser is an open-source

library that provides a multitude of methods that can be used to parse and extract

fragments of code. This library was used to expand the application of the Code Analysis

Tool to identify the number of variables and methods in a Class. Furthermore, the tool

can identify and count the number of conditionals and iteration statements used in

a class. The purpose of counting the logical paths in a class is that we wanted to

perform the Programmability Analysis of MASS vs. Repast. A good metric for this

was to compute the Average Cyclomatic Complexity. Cyclomatic Complexity counts

the number of logical paths in a method. Each method is initialized with a value

of One, and for every Logical Statement encountered, we increment the Cyclomatic

Complexity of the method by One. The metrics of each method are displayed at the

end. We also compute the average Complexity of a method in a class and display the

results.

12

The InitiateVisit Component initiates the MethodVisitor Component to visit sec-

tions of the code and increment the counter (see Appendix D: Java Static Code Analysis

Tool). A list is used to track the count of each logical statement encountered in the

code. Additionally, the tool can be run from any directory by the user. For example,

the tool can be run from within a MASS Application’s directory. The tool will identify

the current working directory, explore all files and folders in the directory and analyze

relevant code files.

3.2 C++ Static Code Analysis Tool

C++ code is hard to parse. A previous attempt was made by a student, Kevin Wang, to

develop a similar tool for C++ Applications but remained unsuccessful. Selecting the

appropriate library for this tool was more challenging than we thought it would be. This

was because much of what is available needs more documentation and usage examples

to understand the usage of methods available. We explored options like CPPParser

and ANTLR and eventually decided on using ANTLR. ANTLR is a parser available

for many languages. This tool was developed using ANTLR’s C++ Grammar files for

Java. The grammar files contain rules which define how C++ code is parsed. This

tool is implemented similarly to the Java Code Analysis Tool. The only key difference

and quite challenging was the parsing. During development, we realized that ANTLR

surprisingly had no specific rules to parse an else-if statement as intended. On the

contrary, the ‘if’ and ‘else’ statements were parsed correctly. The ‘else-if’ statement

was being parsed separately as an ‘if’ and an ‘else’ statement. This introduced an

inconsistency in our results because the counts of statements produced were incorrect.

To fix this, we defined a rule in ANTLR’s grammar file to parse the ‘else-if’ statement

successfully.

Chapter 4

The International Conference on Agents and Artificial

Intelligence 2023

The ICAART 2023 paper demonstrates the improvements in parallel performance with

the Automated Migration and presents a programmability comparison between New

MASS and Repast Simphony [4]. The paper was based on Vishnu Mohan’s contribu-

tions toward generalizing agent navigational patterns and automated agent migrations

[1]. My work for this quarter helped us perform programmability analysis between New

MASS and Repast Simphony. The Static Code Analysis Tool for Java was used to ana-

lyze existing applications developed with New MASS and their Repast versions. From

the metrics we produced, we could conclude that the overall Lines of Code in Repast

were higher than in MASS [4]. From Table 4.1, we proved that the LoC in Repast was

higher because of the need to develop the structural elements of applications in from

scratch.

Table 4.1: Quantitative Programmability Comparison between MASS and Repast Sim-
phony [4]

Measures Libraries BFS Tri Count Range Search CPP

LoC MASS 79 175 400 362
Repast 432 260 539 314

Cyclomatic MASS 2.25 3.875 3.944 3.1
Complexity Repast 1.785 2.45 2.6 2.31
Agent LoC MASS 17 40 122 95
(A) Repast 229 76 139 109
Space LoC MASS 19 37 120 10
(S) Repast 111 94 130 43
Model Mgmt MASS 43 98 158 257
LoC - (A + S) Repast 92 90 270 162

Additionally, we compared both versions of each application to justify our findings

further. Before performing a detailed code analysis, we assumed that the Cyclomatic

14

Complexity of MASS would be higher than that of Repast. Our results proved that

our assumption was correct. We were expecting the cyclomatic complexity of MASS,

in general, to be high because of the nature of developing applications. MASS saw

reduced LoC, but the Cyclomatic Complexity increased because of the frequent use of

conditional statements to call appropriate base methods. A detailed analysis of the

findings was explained in the ICAART paper.

Chapter 5

Results and Analysis

We know that Repast is a GUI-based ABM toolkit. For this reason, all applications

run on it depend on the interface heavily. Each application and the structure of the

problem space are rendered on the display. The application seen in Fig. 5.1 is Breadth-

First Search with 50 Vertices connected by edges. Buttons on this interface allow users

to start and end simulations, besides offering many other options. We started facing

issues during the testing process when we tried benchmarking the applications with

the largest data sets. The GUI struggled to render so many objects onto the display,

which is not surprising considering that everything was being done on One system. We

decided to leave the problem space off the display to continue testing for the largest

data sizes. This beats the purpose of having an interface.

5.1 Breadth-First Search

The BFS Application results were promising at the beginning of the tests. In Ta-

ble 5.1, the time to finish a simulation with 10 and 100 vertices was surprisingly close.

We expected to see a decline in performance at some point because, with hundreds

and thousands of agents traversing the Tree, the application demands more compute

power. Another reason we believe causes an increase in time is the checks performed by

every active agent at a given time. Since agents are responsible for identifying places

around them, they need to check neighbors of the current place. Next, agents request

AgentManager to see whether or not the neighboring places have been visited. Based

on AgentManager’s response, agents continue their exploration.

16

Figure 5.1: JavaCodeAnalysisTool Sample Output Part 2: Cyclomatic Complexity of
Methods

Table 5.1: Breadth First Search Benchmarking Results

Number of Vertices Ticks Elapsed Time (in seconds)

10 4 1.6
100 3 1.5876297
1000 3 4.7715473
10000 3 3837.312504

5.2 Range Search

The results of Range Search were surprising when compared to Breadth First Search.

From Table 5.2, the time is taken to construct the KDTree very fast, regardless of

the data size. This is because of the approach used to construct the Tree. The Tree

is constructed recursively by halving the data and creating Left and Right branches.

Overall, the Range Search process was also very efficient because agents do not traverse

the entire Tree. Instead, agents check the bounds/coordinates passed as input starting

at the Root node. If the points are present on the left branch, the agents traverse

to the left. This process is vice versa if the bounds are on the right-side branch. At

every stage, agents perform this check. As a result, there is a decrease total number of

17

agents used up in the entire search process. An additional piece of work added helped

us calculate the total number of agents required in the application.

Table 5.2: Range Search Benchmarking Results

Number of Vertices Ticks KDTree construction Time (sec.) Range Search Time (sec.) Number of Agents

100 4 0.0008537 1.5650227 13
500 6 0.0051113 1.5223931 39
5000 8 0.1351563 1.5709776 202
10000 10 0.3765646 3.2501259 376

5.3 Java Static Code analysis Tool

The Code Analysis Tool was beneficial in presenting results to the ICAART submission.

The detailed metrics helped draw insights and conclusions. This section will describe

the results from the very first test of the application. The code analyzed was the

source code of this tool. The following metrics are the result of One class only. The

tool displays all the metrics explained below for every class present. To simplify the

readability of the output, it is divided into three segments.

Firstly, the tool displays simple data about the class (Fig. 5.2). This segment gives

a brief overview of the code at a higher level. Since the main method of a class is also

a method in Java, the tool does not necessarily distinguish the main method in a class

in a unique way. In the second part, the tool displays the metrics of each method of a

class (Fig. 5.3). It displays the name of the method defined as is and the Cyclomatic

Complexity of that method. Toward the end of this segment, the tool displays the

average Cyclomatic Complexity of a method in the class. In the final segment, the tool

displays a count of all the class’s Conditionals, Loops, and Error Handling statements

(Fig. 5.4). This segment is beneficial in realizing what increases/add to the Complexity

of the application.

18

Figure 5.2: JavaCodeAnalysisTool Sample Output Part 1: Basic Metrics

Figure 5.3: JavaCodeAnalysisTool Sample Output Part 2: Cyclomatic Complexity of
Methods

19

Figure 5.4: JavaCodeAnalysisTool Sample Output Part 1: Count of Statements

20

ACRONYMS

Symbol Meaning

ABM Agent-Based Modelling

ANTLR ANother Tool for Language Recognition

LoC Lines of Code

MASS Multi-Agent Spatial Simulation

GUI Graphical User Interface

BFS Breadth-First Search

CPP Closest Pair of Points

CPPParser C++ Parser

21

REFERENCES

[1] V. Mohan, “Automated agent migration over structured data.” UWMaster’s White

Paper, 2022.

[2] C. Macal and M. North, “Tutorial on agent-based modelling and simulation,” in

Journal of Simulation, September 2010. https://doi.org/10.1057/jos.2010.3.

[3] M. J. North, N. T. Collier, J. Ozik, E. R. Tatara, C. M. Macal, M. Bragen, and

P. Sydelko, “Complex adaptive systems modeling with repast simphony,” March

2013. https://doi.org/10.1186/2194-3206-1-3.

[4] V. Mohan, A. Potturi, and M. Fukuda, “Automated agent migration over dis-

tributed data structures,” Accepted on 12/22/2022.

22

APPENDICES

A BFSApp

Figure A.1: BFSApp: Structure of classes

23

B RangeSearch

Figure B.1: RangeSearchApp: Structure of classes

24

C MASS Base Code

Figure C.1: MASS Base Code: Structure of classes

25

D Java Static Code Analysis Tool

Figure D.1: JavaCodeAnalysisTool: Structure of classes

26

E C++ Code Analysis Tool

Figure E.1: C++CodeAnalysisTool: Structure of classes

	List of Figures
	Introduction
	History of Agent-Based Modeling
	Agent-Based Modelling Toolkit Selection

	Repast Simphony
	Breadth First search
	Range Search
	MASS Base Code

	Code Analysis Tools
	Java Static Code Analysis Tool
	C++ Static Code Analysis Tool

	The International Conference on Agents and Artificial Intelligence 2023
	Results and Analysis
	Breadth-First Search
	Range Search
	Java Static Code analysis Tool

	Acronyms
	References
	Appendices

