
1

BYOC: Build Your Own Cluster
Part 1: Design

Nathan R. Vance, Michael L. Poublon, and William F. Polik
Hope College, Holland MI, 49423

Computer clusters are a standard tool in scientific computing. Clusters speed up calculations by
computing a single task in parallel or by computing multiple tasks simultaneously, thus rapidly
solving extremely large or computationally intensive problems. They utilize commodity
hardware, resulting in an excellent performance-to-price ratio.

In a basic computer cluster, one computer (the head node) relays instructions to the rest of the
computers (compute nodes) across an isolated local network. The compute nodes then carry
out their assigned tasks, optionally communicate among themselves, and return the results to
the head node. This structure is analogous to a work force: the head node is the manager, who
receives jobs from a customer and subcontracts with the compute node workers. When a
worker is done, it signals the manager that it is available for another task. When the job is
completed, the manager returns the final product to the customer, in this case a calculated
result.

Building a cluster is typically accomplished in one of two different ways. One way is to use
configuration software such as ROCKS to set up a cluster automagically. While this method has
the obvious strength of convenience, weaknesses include being constrained to the assumptions
and supported architectures of the tool. Additionally, it can be difficult to diagnose problems that
arise because these tools conceal what’s happening under the hood.

The other method of cluster building is to build your own. It may take more time to complete, but
the level of control and understanding of the cluster gained by this method makes it worth it in
the long run. Cluster design goals include:

● Robustness - The cluster is flexible enough to support many different applications,
whether known at the time of its initial setup or not.

● Reliability - The cluster, both hardware and software, should be stable for the long-term
after the initial setup.

● Portability - The same process and tools used in this guide can be used on different
distributions with little change.

● Scalability - The procedures should be practical if there are 2, 10, or 100 nodes.
● No “Magic” - Common problems are resolved by straightforward, well documented,

easy-to-follow solutions.
● Heterogeneity - Upgrading in the future is still possible when the hardware may be

different.
● Simplicity - The approach outlined below should allow a person with modest Linux/Unix

experience to build a cluster of their own.
● Low-Cost - The cluster uses readily available hardware and free software (Linux).

This three-part series walks through the process of building a cluster that has all of these
attributes. The first article gives an overview of the cluster’s design, including the setup of
computing hardware, networking, and storage. The second article deals with installing the
operating system and software on the cluster in a scalable manner. The third article covers the

2

configuration of tools and services that transform the loose collection of computers to a tightly
integrated cluster.

Cluster Hardware
There are many hardware components that go into building your cluster. These can generally
be broken down into six general categories: the computers themselves, networking supplies,
physical storage of the computers, power distribution equipment, a console to access the
computers, and spare parts.

● Computers - Clusters can be constructed from generic tower computers. But for large
clusters, computers specifically designed for high performance computing can be
purchased from suppliers such as Supermicro. These systems are preferable to tower
PC's because they come in high-density packages, such as 1 or 2 U rack-mountable
cases (a U is 1.75” of vertical rack space). In either case the computers must work well
with Linux. For scalability, the compute nodes need to support PXE booting and IPMI
control.

○ The head node typically is more capable than the compute nodes since it is the
entry point for the entire cluster. It should support RAIDed hard drives (more on
that later) and must have at least two ethernet ports, one to connect to the
outside world and the other for the isolated internal compute node network.

○ Compute nodes should ideally be small, cheap, and plentiful. Depending on the
application of the cluster, they could have any combination of powerful CPUs,
large amounts of RAM, large hard disks, or GPUs.

● Networking - Your network switch needs to have at least as many ports as you have
compute nodes. Extra ports are always handy in case you decide to add to your cluster
in the future. Network cables are also essential.

● Physical Configuration - A cluster can be constructed from tower PCs on a shelf.
However, a professionally-built cluster will typically use special rack-mounted computers.
Computers will often be on rails allowing them to be slid out far enough to remove the lid
without physically detaching them from the rack. It is advisable to leave enough slack in
the cables on the backs of the computers so that they can be running while pulled out for
diagnostic purposes.
An important consideration is the location for the cluster. A cluster can be rather noisy
due to the fans, so put it in a place where you won't mind some extra white noise. A
cluster can also generate a lot of heat. If it’s large, you’ll need ventilation or a dedicated
air conditioning unit.

● Power Distribution - Computers draw a lot of power, and lots of computers draw lots of
power. The circuits they’re on must be able to handle the draw, and you’ll need power
strips to distribute the power. If your cluster is small, a few consumer grade power strips
should be adequate. Otherwise, large rack mountable power strips exist that report
current.
Additionally, the head node and storage unit should be plugged into an uninterruptible
power supply (UPS) so that they don't immediately halt on a power outage, potentially
corrupting data.

● Access - It isn’t practical to have a Keyboard, Video monitor, and Mouse (KVM) for
every node in the cluster. It is a good idea, however, to have a local KVM hooked up to
the head node. This guarantees that you will always be able to access your cluster to
perform administrative tasks. There are specialty products such as a rack-mountable
LCD monitor and keyboard that can serve this purpose well.

3

Once the cluster is set up, you will be able to access compute nodes using SSH from the
head node. Under normal operation, the nodes can then be headless (operate without a
KVM). Under abnormal operation, such as when initially setting up the cluster or when
diagnosing a problem, you can access the compute nodes using a crash-cart, which is a
mobile KVM with long cables that you can plug into whatever node is having troubles.
Another option is a KVM switch. These switches can use standard IO cables (such as
USB and VGA), or they can work entirely over IP if the computers’ BIOSes support it.
The more nodes involved, the pricier the KVM and cables will be.

● Spares - Stuff breaks. When you have a lot of stuff (as in a cluster), it breaks often. For
example, let’s say that you have 100 hard disks among all of the computers in your
cluster, and each hard disk is rated to operate for 20 years. This is an annual failure rate
of 5%, so you can expect 5 of them to fail in a year, or roughly one every 10 weeks. This
analysis applies to all computer components, meaning that in addition to spare hard
disks, it’s a good idea to also purchase spare RAM, power supplies, and possibly even
motherboards and CPU’s. In a large cluster it's wise to have spare networking
equipment, and in a production environment, an entire spare head node. Spare parts for
compute node repairs are not as necessary since dysfunctional nodes can simply be
taken offline or cannibalized for parts.

In summary, the parts needed to build your own cluster are as follows:

● Head node (optionally a storage node and a spare as well)
● RAID storage (integrated directly into the head node or storage node, or as a separate

device)
● Compute nodes
● Networking switch(es)
● Networking cables
● Rack and mounting hardware
● Power strips
● Uninterruptible Power Supply
● KVM switch and cables
● Spare parts kit (hard drives, RAM, power supplies)

Network Setup
Once you settle on hardware, you need to plan how to connect it up. We'll start with
communication. First, give your cluster a name. Names are used as aliases for IP addresses,
making it much easier for a human to identify individual computers on a network. A cluster
computer uses two different networks: the external network (aka "the internet") that only the
head node connects to, and the internal network that the cluster uses for internal
communication. Therefore, two names must be configured, one for the external network and
one for the internal network.

● External Network - This is used only by the head node. The name on the external
network is typically formatted as hostname.domain.suffix, where the hostname is
whatever you want, and the domain.suffix pertains to the organization using the cluster.
The example used in this guide is name.university.edu.

● Internal Network - This is used by all nodes in the cluster. The internal name is typically
the hostname component from the external name used in conjunction with a numbering
scheme. For example, we append two digits to the end of the hostname for each node:
name00 (head node), name01 (first compute node), etc. This scheme limits us to 100
nodes, but can easily be expanded to accommodate future upgrades.

4

Naming computers is vital for humans to be able to maintain the cluster, but the computers
themselves deal with numeric IP addresses. The method for obtaining an IP address on the
external network is up to your network administrator, but you get full reign over the internal
network. Two methods exist for assigning IP addresses in the internal network: static and
dynamic assignment.

● Static Assignment - Each compute node is configured individually with its own IP
address. This contradicts the scalability goal of this guide because manually configuring
IP addresses for a large number of nodes is not practical.

● Dynamic Assignment - Each compute node has an identical configuration and receives
its IP address from the head node through the network based on its unique MAC
address. This guide uses dynamic IP assignment.

Storage Node
So far in our description of a cluster we have mentioned a single head node that acts as an
access point to the cluster, along with many compute nodes to perform the tasks the cluster
receives. Many large clusters will further separate out tasks, especially if the head node
becomes a bottleneck for cluster operation. For example, it is common to have a separate
storage node to manage the files to which the compute nodes need access, such as application
software and each user’s home directory.

Disk Partitioning
As opposed to Windows where partitions are referred to as lettered drives, in Linux they are
mounted under directories called "mount points" in the file system. Partitions are useful for
keeping data, applications, and system software separate for easy backups and reinstallations.
This section highlights useful Linux partitions assumed in this article:

● root (/) - This partition is where the actual operating system resides, and other partitions
will be mounted in its file system.

● /boot - The files Linux uses to boot, including the kernel itself, are located here. For
mostly historical reasons some administrators prefer to keep this on a separate partition,
but we will keep them on the same partition as root.

● /admin - Disk images, software distributions, kickstart files, and backups are stored
here. This is vital for the installation of all compute nodes in a scalable way.

● /home - User files are located here. We will make this a separate partition from root for
ease of backups, upgrading, and reinstallations.

● /export - System wide application software to be run on compute nodes is stored here.
While sometimes a partition of its own, it can be subsumed under /home/export instead.

● /scratch - Hefty computations like those done on clusters often involve writing large
temporary files to the hard disk over the process of the computation, then reading these
files to complete a result. It is recommended to have a large partition on all compute
nodes set aside for this purpose.

● swap - Swapping is the process by which, should Linux run out of memory, it writes
pages of memory to the swap partition on the hard disk. This can result in allowing
memory intensive software to run on systems with too little RAM. However, swapping is
orders of magnitude slower than using RAM. Perhaps a decade ago when RAM was
expensive it would have been advisable to have a large swap partition. But now that

5

RAM is cheap, it is best not to swap at all but instead to buy more RAM if memory
constraints become a problem, or use software that is designed to use the /scratch
partition.

If your nodes use multiple disks, you will have the choice of which ones to use for which
partitions. By convention, the root partition should go on the first hard disk, but the rest is up to
you. The following is an example of single disk partitioning schemes using 1TB hard drives.

Head node Compute Node

/ (includes boot) 200 GB / 200 GB

/admin 200 GB /scratch rest of space

/home
(includes export)

rest of space

Table 1: Head and compute node partitioning schemes for 1 TB drives

RAID Devices
When storing large amounts of data, it is highly recommended to utilize a RAID (Redundant
Array of Independent Disks) device. This may be integrated directly into the head node, a
separate component connected to the head node, or part of a separate storage node.

A RAID device works by combining several small physical drives to form one larger, faster
virtual drive. A RAID device can also introduce data redundancy, which allows a drive to fail
while still preserving the data. This is absolutely vital in a production environment. As was
mentioned earlier, with many components comes frequent component failures. A drive on a
compute node failing isn’t the end of the world since there’s nothing on it that can’t be
reinstalled, so clusters will often use a single hard drive for each compute node. However,
losing all of the cluster’s application or user data would be a disaster, making RAIDing of head
node partitions a must.

There are several commonly used RAID levels that achieve increased size and speed,
redundancy, or both of these goals.

● RAID 0 provides a storage size and performance increase by "striping" data across two
or more drives. This means that consecutive data segments are stored on different
disks. This may significantly improve read time in some applications; however, one failed
drive causes all of the data to be lost. A RAID 0 drive is as large as the size of its
smallest drive times the number of drives.

● RAID 1 provides redundancy with no storage size or performance increase by
"mirroring" data writes to two or more disks, allowing one to go down while still
preserving the data. The size of a RAID 1 drive is the same as its smallest drive.

● RAID 5 is similar to RAID 0 except that it includes redundant parity information spread
across the 3 or more disks. This allows any one disk to fail without the loss of data. The
RAID as a whole will store as much as the smallest drive times one less than the
number of drives.

6

● RAID 6 is similar to RAID 5 except that it has two disks worth of redundant parity
information spread across 4 or more drives. This allows for two disks to fail without the
loss of data. Storage will be limited to the size of the smallest drive times two less than
the number of drives.

Hot Spares are blank drives included with a RAID 5 or 6 device. When one drive fails, the RAID
device rebuilds the information formerly on that drive onto the hot spare using the redundant
information spread across the other drives. If hot spares are not included, this process would
only begin when you manually swap out the failed disk. If you happen to be on vacation and
can’t get a friend to perform this task, you run the risk of additional drives failing and resulting in
data loss before you return.

No matter how many hot spares you provision yourself with, your data isn't 100% safe from disk
failures wiping it out. Using a RAID device may make the likelihood of losing your data smaller,
but it won't eliminate it. Therefore, if your data is at all important (you're going through the effort
of building a cluster in order to obtain it, so it is), make sure you have access to another
machine in a different physical location to which you can back up files.

Assembly
After you have gathered all your hardware and planned the configuration, you can begin the fun
part of cluster work: actually assembling your cluster. Arrange your nodes for good air flow.
When running cables, make sure to use differently colored cables for the internal and external
networks, and label them on both ends. It can be both time consuming and frustrating to track
down a problem only to find that it was caused by a swapped network cable. If things are kept
consistent among nodes, your life will be much easier when it comes to managing your cluster.
Ideally when starting out, your compute nodes should all be identical, both in terms of internal
hardware and external cable configuration. In our experience, however, this ideal is seldom
maintained over the long-term as the cluster expands or specialized capabilities are added.

Maintenance
Scalability for a cluster requires that it is easy to set up all of the compute nodes with identical
configurations. This ability is useful in several scenarios: to initially install the cluster, to reinstall
a node for maintenance, or to add new nodes to the cluster.

There are two methods for achieving this goal. The first is to perform a complete installation on
a single node, save a disk image, and write that image to all other nodes. Unfortunately, this
strategy results in a loss of support for heterogeneity. If you desire to add nodes of a different
architecture than what’s already in the cluster, you’d be forced to start from scratch in installing
them.

The other method is to script all the changes to the operating system so that they can be
applied during an automated install. Such installation scripts typically record basic settings
similar to those that would be configured in the system installer, a list of software packages to
install beyond the initial system, and a script to handle all other modifications. This installation
method solves the issue of heterogeneity in that the installer handles the choice of software,
allowing the same script to be used on multiple architectures assuming that all requested
software is packaged for the different architectures. Furthermore, a script containing an

7

exhaustive list of modifications from a clean install is an excellent resource when diagnosing
future issues or for performing an operating system upgrade. Most major distributions support
this method. On CentOS it is called kickstart.

In practice, a combination of these two methods is used. For example, scripts are used to build
the cluster, and an image can be used to replace a bad hard disk on a compute node.

System Software
In part 2 of this series we will dive into installing CentOS using kickstart. This procedure involves
performing a single manual installation to generate the base kickstart file, then iteratively making
modifications until the operating system installs on the head node and compute nodes without
manual intervention. The end result will be a functional operating system on every node with
networking in place.

In part 3 we will describe the installation and configuration of software that makes these
networked computers function as an integrated cluster. This software includes DHCP for IP
addresses assignment, NFS to share file systems over the internal network, passwordless SSH
between all nodes, a suite of administrative tools, a local software repository for supplying
RPMs to compute nodes, Ganglia for monitoring the cluster, and SLURM as a resource
manager.

Application Software
When building a cluster, it’s important to know what you’re going to do with it. You should have
already done some research to be sure that software exists to achieve your goal. For example,
we built a high-throughput computational chemistry cluster that runs quantum chemical
programs and molecular dynamics simulation software. This requires compute nodes with multi-
core CPUs, GPUs, large amounts of RAM, and significant scratch space.

An important consideration is licensing of the application software that will run on the cluster.
For example, there are many free or open source computational chemistry programs for which
licensing isn’t a problem, such as MOPAC, GAMESS, and ORCA. One can purchase a site
license for commercial software such as Gaussian and use it across the cluster. Other
commercial programs like QChem require being keyed to the specific nodes on which they will
be running.

Conclusion
In this article we discussed the considerations that go into designing a cluster computer. To start
we outlined our design goals, a vital one being that our setup is scalable to accommodate any
number of nodes without their installation and administration becoming impractical. We then
discussed the hardware that goes into the cluster, including the computers, networking
equipment, physical storage, power distribution, access, and spare parts. We also designed a
disk partitioning scheme for the head node and compute nodes that allows for easy backups,
upgrades, and reinstallations. We described the networking of a cluster, including an external
network connection and an isolated internal network. Finally, we discussed the physical

8

assembly of the cluster, introduced the importance of maintenance, and touched on the cluster's
application.

In the next article we will install the base operating system and set up network connectivity. In
the process we will create two kickstart files, one for the head node and the other for the
compute nodes. In the third article we will turn the group of computers into a single cluster by
configuring vital system services to communicate and run cluster software.

1

BYOC: Build Your Own Cluster
Part 2: Installation

Nathan R. Vance, Michael L. Poublon, and William F. Polik
Hope College, Holland MI, 49423

In part 1 of this three-part series, we left off with bare metal hardware assembled, a disk
partitioning scheme for the head node and compute nodes, and a design for the network.

In this article we will bootstrap ourselves up to performing fully automated operating system
installations on both the head node and compute nodes, a vitally important step for the cluster to
be scalable to large numbers of compute nodes. To create the kickstart scripts used in
automated installations, we will perform the installation many times, each time with a larger
amount of the process being automated. By the end of this article we’ll have an operating
system on all nodes and network connectivity.

Head Node Manual Installation
We start with doing things manually for several reasons. First, it’s a great opportunity to make
sure that the hardware is correctly set up. Second, a manual installation generates the kickstart
file template that will be used in subsequent installations. While examples of kickstart files can
be found online, it’s more useful to generate it yourself because then you can be sure that it
contains the specifics for your hardware setup.

To perform the installation, you’ll have to download the distribution as an ISO file, burn it to a
DVD, and boot from it. This guide uses CentOS 7, the redistributable version of Red Hat
Enterprise Linux. You could alternatively burn it to a USB drive; however, Linux currently names
hard disks and flash drives in an arbitrary order, changing the sda and sdb labels on different
boots. This will become a problem when we start kickstarting installations. There are
workarounds like using the more verbose UUID naming scheme, but to avoid confusion, we will
assume you use the DVD.

When installing, we will assume the disk partitions as described in part 1 of this series:

● / - 200 GB
● /admin - 200 GB
● /home - rest of space

For networking, configure the interface on the external network as your network administrator
dictates. As you've probably discovered by now, it’s important to always be on your network
administrator’s good side since they have nearly unlimited power over your internet connectivity.
But you have full control over the internal network of the cluster.

When configuring the network interface on the internal network, set it to use a statically
assigned IP address. The address should be selected from one of the private IP address
ranges, which are:
 192.168.0.0 - 192.168.255.255
 172.16.0.0 - 172.31.255.255

2

 10.0.0.0 - 10.255.255.255
In this article, we will use a subset of the 192.168 range, specifically 192.168.1.100 -
192.168.1.199, which provides 100 IP addresses. The head node should use the first IP
address in the range. Therefore, the configuration for the head node on the internal network is:
 Address: 192.168.1.100

Netmask: 255.255.255.0

When you select packages to install, choose Server With GUI, and choose E-mail Server and
Development Tools as add-ons. We'll fine tune this selection later, but this is a good starting
point.

Head Node Automated Installation
To achieve reliability, one needs to have a reproducible installation method that provides
consistent results. Luckily, Red Hat’s installer, anaconda, has a reliable and scalable method
called "kickstart." Kickstarting means that the installer uses a configuration file to automatically
install Linux. Anaconda generates a kickstart file after every installation, which can be found at
/root/anaconda-ks.cfg.

After manually installing the head node, locate this file and copy it as ks.cfg to a separate
computer as a backup. We will be editing ks.cfg over the course of this article, and if the only
copy resides on the same machine being reinstalled, a typo could result in its destruction.

Editing the ks.cfg File
The kickstart file can be edited to include all desired installation options and post-installation
configurations. The kickstart file must use Unix end of line characters, so if you're going to edit
the file on a Windows machine, use an editor like notepad++ that respects this difference.
Otherwise, it's easiest to just edit it on the head node and back it up to some other machine.

Kickstart files have a specific formatting so that they can be parsed by the system installer. A
few important features include:

● Comments - Any line with a leading # is ignored by the installer. They are used to
comment on code or to disable small sections of code.

● Partitioning - There are several lines with partition info that you selected during the
manual installation. Add the option --noformat to the partition entries that you don’t want
to be formatted by the installer such as /admin and /home. Do not add this option to the /
partition as it contains the previously installed OS, which should be erased and replaced
during a reinstallation.

● Repository - This tells the installer where to find the repository to install from. Currently,
it is set to install from a cd:
Use CDROM installation media
cdrom
The repository line will be modified several times during this guide.

● Miscellaneous Settings - Settings may be applied such as disabling selinux, changing
bootloader options, and much more. Modify them to disable selinux:
selinux --disabled
Visit Red Hat's Kickstart Options guide for an exhaustive list of kickstart options at
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html

3

● Packages - After the %packages tag is a list of packages to be installed. Those that start
with a @ correspond to groups of packages, such as @ Base. The others are individual
packages.

● Postscript - At the end of the installation some additional commands may be executed.
Add the following to the end of the file:
%post
%end
Between these tags we will add post installation scripts that will be executed once the
installation completes. In the DHCP configuration section later in this article a sample
script to automatically configure DHCP is given. It is highly recommended to include all
similar system modifications here as well for documentation, backup, and reinstallation
purposes.

Creating an automated installation is an iterative process in which one modifies the kickstart file,
reinstalls the system, and verifies that the changes took hold as intended. For example, to
check that /admin and /home (and any others that you specified) don’t get formatted during the
install, create a file on the partition and see if it exists after anaconda finishes reinstalling. Also
check that selinux is indeed disabled. You will perform a multitude of installations during the
creation of the cluster, each time automating and then testing a new capability or feature added
to the cluster. Hence, it is vital to automate the process.

Accessing the kickstart file for an automated installation can be done in a variety of ways. The
kickstart file can be located on an ext2 or fat32 formatted usb drive, or on a partition on the hard
drive from where it can be read by the installer.

The following table summarizes the different installation methods we will use to bootstrap
ourselves up to a fully automated installation without removable media. In this table, the
boot/installer is the collection of files from which the CentOS installer boots, which currently
reside on the DVD. Likewise, the distro is the repository of software that the installer uses to set
up the CentOS operating system, also currently located on the DVD.

Installation Method Boot/Installer
Location

Kickstart Location Distro Location

Manual DVD None DVD

Automated DVD DVD USB DVD

Automated Hard
Drive

DVD Hard Drive Hard Drive

Sans Removable
Media

Hard Drive Hard Drive Hard Drive

Table 1: Installation plan for the head node

The end goal is to eliminate the need for removable media and instead to use the hard disk for
the entire installation process.

DVD Based Booting with Kickstart on USB

4

Before we start, this method has one caveat: depending on the hardware configuration of your
system, when the installer boots, the usb drive may show up as a different drive than normal.
For example, in a configuration with two hard drives sda and sdb, when you insert a usb drive it
comes up as sdc. However, upon booting into the installer the usb drive might be sda while the
hard drives are sdb and sdc. This scenario would require the kickstart file to be edited so that all
references to any sdX hard drives are shifted one letter.

To install CentOS using a kickstart file on a USB drive:

1. Copy the kickstart file to a blank ext2 or fat32 formatted usb drive. Make sure the
repository line is set to
cdrom

2. With the usb inserted into the head node, you can now use the kickstart file while
booting from the DVD by pressing tab at the initial welcome screen and appending the
following to the boot options:
inst.ks=hd:sdX1:/ks.cfg
Note that sdX corresponds to the usb device when booting with it in place, and that the
drive letter X might not be the same as when you inserted it into a running operating
system. The installer will allow you to edit this line if it fails to find the kickstart file on the
specified device.

By performing an installation this way we have verified that the kickstart file is properly
formatted. The next step is to eliminate the USB drive and to reduce our reliance on the DVD.

DVD Based Booting with Kickstart and Distro on Hard Drive
The first step in migrating away from external media is to move the kickstart and distro to the
hard drive, thus eliminating the USB drive and reducing the responsibility of the DVD down to
just booting.

To use the kickstart and distro from the hard drive:

1. Make sure you know the device name of the partition mounted as /admin. This
information can be discovered using the lsblk command.

2. Create the following folder hierarchy in /admin
 # mkdir –p /admin/iso/centos7/

mkdir -p /admin/ks/headnode/
3. Copy the installation media to iso/centos7. If you have the original ISO file floating

around you can simply copy it across the network. If not, you can use the dd command
to create it from the DVD.
dd if=/dev/cdrom of=/admin/iso/centos7/CentOS-7-x86_64-DVD-1511.iso

4. Copy the kickstart file to the newly created ks/headnode folder. In the ks.cfg file,
comment out the repository line and replace it with the following:
harddrive –-partition=sdXY –-dir=/iso/centos7/
Note that sdXY is the partition in which /admin is located. This can be discovered using
the lsblk command. Also, while you have ks.cfg open, verify that it isn't set to format
/admin. You’ve just made some fairly significant additions to that partition, and it would
be a bummer to wipe them all out.

5. Insert the DVD and reboot. Press tab at the initial welcome screen and append the
following options:
inst.ks=hd:sdXY:/ks/headnode/ks.cfg

5

The installation should now proceed using both ks.cfg and the ISO from the hard drive.
This makes the installation go much faster since it doesn’t have to read everything from
the DVD.

The next step in eliminating external media is to set up the /admin partition to be the installer.

Installation Sans Removable Media
Currently, the only role the DVD serves is to boot the installer. In this final step we will transfer
that role to the hard drive, eliminating the need for all external media. To do so we will configure
grub to boot directly into the installer, pass it the boot options for locating the kickstart file, and
install CentOS completely automatically, without any external media or typing
inst.ks=<location> options into the terminal.

To run the installer from the hard drive:

1. Make a directory to house boot files.
mkdir /admin/boot/

2. Mount the iso and copy the internal files to the boot directory.
mount –o loop /admin/iso/centos7/CentOS-7-x86_64-DVD-1511.iso /mnt
cp -a /mnt/* /admin/boot/

3. At the bottom of /etc/grub.d/40_custom insert the following:
menuentry "Install" {
 set root=(hdW,msdosZ)
 linux /boot/images/pxeboot/vmlinuz ks=hd:sdXY:/ks/headnode/ks.cfg
 initrd /boot/images/pxeboot/initrd.img
}
Note the(hdW,msdosZ) and ks=hd:sdXY lines. These correspond to the drive and partition
for /admin. Use the command lsblk to find the partition in sdXY format. W then
corresponds to the drive number; sda is 0, sdb is 1, and so forth. Z is the partition
number /admin is on. So, if /admin is located on sda2, use (hd0,msdos2).

4. Regenerate grub.cfg.
grub2-mkconfig -o /boot/grub2/grub.cfg

5. At the end of the ks.cfg file, between %post and %end, insert the following:
#grub configuration
cp -p /boot/grub/grub.conf /boot/grub/grub.conf.000
cat >> /etc/grub.d/40_custom << EOF
menuentry "Install" {
 set root=(hdW,msdosZ)
 linux /boot/images/pxeboot/vmlinuz ks=hd:sdXY:/ks/headnode/ks.cfg
 initrd /boot/images/pxeboot/initrd.img
}
EOF
grub2-mkconfig -o /boot/grub2/grub.cfg
This script will now automatically modify your grub.cfg file as done in steps 3 and 4.
Make sure to modify the (hdW,msdosZ) and sdXY lines as in step 3. The method used
here for writing this text to /etc/grub.d/40_custom is called a here file. As opposed to
using the echo command, here files have far fewer characters that must be escaped,
though there are some characters that still need to be. For example, every $ or ` symbol
must be escaped with \$ or \`. Otherwise, bash will attempt to resolve it as a variable or
executable script.

6. Reboot. At grub’s splash screen, arrow down to the entry titled "Install" and press enter.
The system should now install.

6

Now the system installs automatically without external media. This is a very useful ability to
have when rebuilding the head node. It will be essential for building compute nodes!

Head Node DHCP
Before installing the compute nodes, Dynamic Host Configuration Protocol (DHCP) must be
configured on the head node. DHCP allows the compute nodes to receive their network
configuration from a central server. This step is vital for a scalable system because it allows the
nodes to be identically configured but have unique IP numbers.

To configure DHCP on the head node:

1. Install dhcp
yum install dhcp

2. Add the following to /etc/dhcp/dhcpd.conf
#dhcpd config options
authoritative;
default-lease-time -1;
option broadcast-address 192.168.1.255;
ddns-update-style none;
next-server 192.168.1.100;
filename "pxelinux.0";

subnet 192.168.1.0 netmask 255.255.255.0 {

range 192.168.1.101 192.168.1.199;
option subnet-mask 255.255.255.0;
option domain-name-servers 8.8.8.8;
option routers 192.168.1.100;

}
Change the range option to include enough addresses for all of your nodes. Note that
some bolded options may need to be adjusted if the head node’s internal IP is not
192.168.1.100. The domain-name-servers option may point to whatever DNS you
desire, in this example we use Google’s at 8.8.8.8, though some network administrators
may require you to use their own.

3. To start the DHCP service on the head node at boot time, execute the command
systemctl enable dhcpd
And to start the service immediately, execute the command
systemctl start dhcpd

4. To automate this process, in ks.cfg, append dhcp to the %packages list, and between the
%post and %end tags add the following:
#dhcp
cp -p /etc/dhcp/dhcpd.conf /etc/dhcp/dhcpd.conf.000
cat > /etc/dhcp/dhcpd.conf << EOF

 [Contents of dhcpd.conf as determined in step 2 go here]
EOF
systemctl enable dhcpd

5. To use DHCP, the firewall must allow it. Since we want all communications on the
internal network to go unobstructed, we can simply add the interface on that network to
firewalld's trusted zone.
firewall-cmd --permanent --zone=trusted --change-interface=[INTERNAL
INTERFACE]
echo "ZONE=trusted" >> /etc/sysconfig/network-scripts/ifcfg-[INTERNAL
INTERFACE]
nmcli con reload
firewall-cmd --reload

7

Use the command ip addr to discover [INTERNAL INTERFACE]. Add these changes to the
kickstart using the following lines
firewall-offline-cmd --zone=trusted --change-interface=[INTERNAL INTERFACE]
echo "ZONE=trusted" >> /etc/sysconfig/network-scripts/ifcfg-[INTERNAL
INTERFACE]
A more thorough explanation on firewalld will be forthcoming in the next article.

Now that the head node is fully automatically installed and support for a basic network is in
place, we can proceed to the compute nodes.

Compute Node Manual Installation
On a single compute node, boot from the installation DVD and perform a manual installation.

Compute nodes have a different partition table, network setup, and package selection than the
head node. The example partitioning scheme we used in Part 1 of this series is:

● / - 200 GB
● /scratch - rest of space

When configuring networking for the compute node, connect using a dynamic IP address. If
DHCP is set up on the head node correctly, you should receive an address.

For now, make the package selection a Minimal installation.

The generated kickstart file on the newly installed compute node is located at /root/anaconda-
ks.cfg and should be transferred to the head node. In /admin, create a directory to house the
compute node kickstart file:
mkdir /admin/ks/computenode/
And copy it over the network from the compute node to the head node
scp 192.168.1.101:/root/anaconda-ks.cfg /admin/ks/computenode/ks.cfg
substituting the node’s actual ip address as determined by running the command ip addr on it.

Compute Node Automated Installation
Automated installations are incredibly important for compute nodes in a cluster. While manual
installations may be practical (though still undesirable because of reliability) for small test
clusters, they scale poorly and are impractical for medium to large clusters.

For the compute nodes, the process of automating the installation will be similar to that of the
head node. In the kickstart file, be sure to disable selinux as was done for the head node, and
also disable the firewall because the compute nodes won’t be connected to the outside world
anyway.
selinux --disabled
firewall --disabled

Like with the head node, we will transfer responsibilities away from the DVD. This time, rather
than the final destination for installation files being the compute node itself, it will be the head
node accessed over the network. In the final configuration, the compute nodes will boot over

8

Pre-boot eXecution Environment (PXE), and will retrieve their kickstart files and distributions via
a Network File System (NFS).

Method Boot/Installer
Location

Kickstart Location Distro Location

Manual DVD None DVD

Automated DVD DVD USB DVD

Automated NFS DVD NFS NFS

Automated PXE PXE NFS NFS

Table 2: Installation plan for the compute nodes

DVD Based Booting with Kickstart on USB
The procedure here is the same as under the head node. If you are still learning about kickstart
files, feel free to follow the DVD Based Booting with Kickstart on USB instructions under the
head node section. But otherwise, save yourself time and use NFS as described in the next
section.

DVD Based Booting with Kickstart and Distro on NFS
NFS allows compute nodes to access files stored on the head node over the internal network.
This is a necessary step for the scalability of the cluster, since it would be impractical to have a
copy of the kickstart and distro locally on each node at installation time.

In this section it is assumed that the directory structure on the head node is configured as
follows:

● /admin/boot contains the contents of the DVD as in Head Node Installation Sans
Removable Media

● /admin/ks/computenode/ks.cfg is the kickstart file for the compute nodes
● The head node’s IP address on the internal network is 192.168.1.100
● The head node is assigning addresses using DHCP (this was verified during the

compute node manual installation)
If your setup differs, modify the following commands accordingly.

To install over NFS:

1. On the head node, open the file /etc/exports in a text editor and add the following:
/admin 192.168.1.100/255.255.255.0(ro,sync,no_root_squash)
This gives all computers on the 192.168.1.0/24 subnet read only (ro) access to the
/admin directory.

2. Restart the NFS service so that this change takes effect. If NFS wasn't already running,
this will start it.
systemctl restart nfs

3. In the compute node ks.cfg file (located on the head node), comment out the repository
line and replace it with:
nfs --server=192.168.1.100 --dir=/admin/boot

9

This tells the installer to look for the installation files on the network rather than on a
DVD.

4. On a compute node, determine the name of the network interface that connects to the
internal network using the command ip addr. The interface name could be formatted in
one of several different ways depending on your motherboard, such as ethX, enoX,
enpXsY, or if you’re unlucky, en<mac address>.

5. You can now use the kickstart file while booting from the DVD by pressing tab at the
initial welcome screen and appending the following to the boot options:
ks=nfs:192.168.1.100:/admin/ks/computenode/ks.cfg ksdevice=ethX
substituting ethX for the interface name found in step 4.

6. To make the changes on the head node persistent between installs, add the following to
the end of the ks.cfg file for the head node between the %post and %end tags:
#nfs
echo "/admin 192.168.1.100/255.255.255.0(rw,sync,no_root_squash)" >>
/etc/exports
systemctl enable nfs

The compute nodes are now capable of retrieving kickstarts and installation files over the
network, but that is only half of the story. To make the installation proceed without any media,
the nodes must boot over the network as well.

PXE based NFS
Pre-boot eXecution Environment (PXE), called MBA on some BIOSes, allows nodes to retrieve
their boot media via the network. Here are some basic prerequisites before using PXE:

● Your motherboard supports PXE
● PXE is enabled in your BIOS
● PXE is set before local boot methods on the BIOS boot order

PXE allows us to perform kickstart installations on the nodes without having to physically load
any disks. It's then possible to start an automated installation merely by powering on the cluster.
Think about it: throw a switch, take a lunch break, and when you get back, the entire cluster is
installed. That's scalability!

To make this claim a reality and install the compute nodes from the head node:

1. On the head node, install syslinux, tftp-server, and tftp using yum. Add these to the
Packages section of the kickstart file for documentation and reinstallation purposes.

2. On the head node, make and populate the directory /admin/tftpboot
mkdir /admin/tftpboot
cp /usr/share/syslinux/pxelinux.0 /admin/tftpboot/
cp /usr/share/syslinux/menu.c32 /admin/tftpboot/
mkdir -p /admin/tftpboot/images/centos7/

3. Copy in a compressed kernel and initial ramdisk from which the compute nodes can boot
cp /admin/boot/images/pxeboot/vmlinuz /admin/tftpboot/images/centos7/
cp /admin/boot/images/pxeboot/initrd.img /admin/tftpboot/images/centos7/
These two files are necessary for booting a bare bones linux system. Vmlinuz is a
compressed linux kernel, and initrd.img is a temporary root filesystem. When we boot a
compute node over PXE, these two files will be transferred to the compute node, giving it
the software required to access the kickstart file and the rest of the installation files over
NFS.

4. Create a directory to hold the PXE configuration files
mkdir /admin/tftpboot/pxelinux.cfg

5. Create the new file /admin/tftpboot/pxelinux.cfg/default containing the following:
DEFAULT menu.c32
PROMPT 0

10

TIMEOUT 100
ONTIMEOUT kickstart
MENU TITLE PXE Menu
MENU seperator
LABEL local
LOCALBOOT 0
MENU seperator
LABEL kickstart
 kernel images/centos7/vmlinuz
 append initrd=images/centos7/initrd.img
ks=nfs:192.168.1.100:/admin/ks/computenode/ks.cfg ksdevice=ethX
[Editor Note: the append line is all one line including the ks and ksdevice arguments.]
Modify the ksdevice as needed. Notice that when the menu times out (ONTIMEOUT), it
defaults to the kickstart option. This is useful for installing the cluster without manual
intervention. But this must later be changed to local for the cluster to reboot without
reinstalling the OS.

6. Edit the file /usr/lib/systemd/system/tftp.service, changing the line
ExecStart/usr/sbin/in.tftpd -s /var/lib/tftpboot
to
ExecStart/usr/sbin/in.tftpd -s /admin/tftpboot
and restart the service so that this change takes effect. This change could be added to
the head node’s kickstart file using a here file, but it's more concise to use sed:
sed -i.000 's|/var/lib/tftpboot|/admin/tftpboot|'
/usr/lib/systemd/system/tftp.service
In this command, the flag -i.000 specifies that sed is to do the modification in place, that
is, it will perform the change and write it back to the original file. The .000 part makes it
so that sed will save the original file with a .000 extension as a backup. The next
component, in single quotes, specifies the operation that sed is to perform. The ‘s’ tells it
to do a substitution (as opposed to a deletion or insertion), the pipe (|) serves as a
delimiter between parts of the command, and the two strings are the parts to exchange.
Finally, the file path at the end of the command specifies the file that sed operates on.

7. Reboot a compute node. Or all of them. If everything is set up correctly, they will install
automatically.

8. Change ONTIMEOUT kickstart to ONTIMEOUT local. Otherwise, every reboot will result in
a reinstall.

An explanation on the inner workings of PXE booting is in order. When pxelinux.0 boots on a
machine, it tftp’s back to the boot server and tries to find a configuration file in the directory
pxelinux.cfg. The filename is determined by converting the IP address given to it by the DHCP
server to hexadecimal. For example:

192 168 1 101
C0 A8 01 65 → C0A80165

pxelinux.0 attempts to find files in pxelinux.cfg in the following order:

C0A80165
C0A8016
C0A801
C0A80
C0A8
C0A
C0

11

C
default

This PXE feature is useful for supplying specific kickstart files for different sets of compute
nodes because of hardware differences; for example, it can supply different partitioning
schemes for different hard disk sizes. Right now DHCP on the head node is configured to dole
out IP addresses in an arbitrary order, making it hard to take advantage of this feature. In the
next article we will fix that.

When booting a compute node over the network, vmlinuz (the compressed kernel) and
initrd.img (the compressed initial file system) are transferred back to the compute node, along
with the boot options.

In our case with the kickstart option, the boot options tell the installer (included in initrd.img)
the location from which to retrieve ks.cfg, which in turn includes the location of the distro.

PXE is also useful for booting other images such as Memtest and other diagnostic tools.

Conclusion
In this article we covered the basics of kickstart files on CentOS, and we set up a scalable
method for installing the entire cluster. The resulting system is capable of intercommunication
over ssh as root, but it doesn't have any useful cluster-wide application software or users on it
yet.

In the final article we will address the Linux services that are vital for cluster operation,
culminating on a resource manager called SLURM. With this software in place, the cluster will
be fully-fledged and ready for its end users.

1

BYOC: Build Your Own Cluster
Part 3: Configuration

Nathan R. Vance, Michael L. Poublon, and William F. Polik
Hope College, Holland MI, 49423

In part 1 of this series we designed and assembled a computer cluster, and in part 2 we set up a
scalable method to perform reproducible installations across an entire cluster. At this point, we
have a cluster consisting of Linux (CentOS 7) installed to every node and a network that
currently allows SSH between nodes as root. Additionally, we have kickstart files, making it
possible to reinstall the entire cluster in a scalable manner.

We must now configure various Linux services to convert our collection of networked computers
into a tightly integrated cluster. In this article, we will address:

● Firewalld - a firewall on the head node to protect the cluster from external threats
● DHCP - a more in-depth look at assigning IP addresses to compute nodes in a

deterministic manner
● /etc/hosts - the file that maps node names to IP addresses
● NFS - share additional file systems over the network
● SSH/RSH - log into compute nodes without providing a password
● btools - scripts to run administrative tasks on all nodes in the cluster
● NTP - keep the cluster’s clock in sync with the Network Time Protocol
● Yum Local Repository - install packages to compute nodes without traffic forwarding
● Ganglia - a cluster monitoring suite
● Slurm - a resource manager for executing jobs on the cluster

Each of the following sections gives a description of the service, how to configure it for use in a
cluster, and some simple usage cases as appropriate. Installing these services converts our
networked computers into a useful functioning cluster.

Firewalld
Firewalld is an abstraction layer for netfilter and is the default firewall for CentOS. Only the head
node needs a firewall because it is the only node that is in direct contact with the outside world.
The compute nodes should already have had their firewalls disabled in their kickstart so that
their firewalls don't interfere with internal communication.

An article in Linux Journal in September 2016 describes how firewalld works. Provided here are
a few commands to set up a basic firewall that allows ssh and http at your local institution, drops
traffic from the rest of the world, and allows all traffic on the internal network:

firewall-cmd --permanent --zone=internal --add-source=[IP/MASK OF YOUR INSTITUTION]
firewall-cmd --permanent --zone=internal --remove-service=dhcpv6-client
firewall-cmd --permanent --zone=internal --remove-service=ipp-client
firewall-cmd --permanent --zone=internal --add-service=ssh
firewall-cmd --permanent --zone=internal --add-service=http
firewall-cmd --permanent --zone=public --remove-service=ssh
firewall-cmd --permanent --zone=public --remove-service=dhcpv6-client
firewall-cmd --permanent --zone=public --set-target=DROP

2

firewall-cmd --permanent --zone=public --change-interface=[EXTERNAL INTERFACE]
echo "ZONE=public" >> /etc/sysconfig/network-scripts/ifcfg-[EXTERNAL INTERFACE]
firewall-cmd --permanent --zone=trusted --change-interface=[INTERNAL INTERFACE]
echo "ZONE=trusted" >> /etc/sysconfig/network-scripts/ifcfg-[INTERNAL INTERFACE]
nmcli con reload
firewall-cmd --reload

In this listing, [IP/MASK OF YOUR INSTITUTION] is the network address and netmask for your
school, business, etc. formatted 123.45.67.0/24. [EXTERNAL INTERFACE] is the interface
connected to the outside world, such as eno1. [INTERNAL INTERFACE] is the interface connected
to the internal compute node network, such as eno2.

As with all of the services we will configure, these changes should be added to your ever
growing kickstart file. Note that when adding firewalld commands to your kickstart file in the
%post section, you need to use firewall-offline-cmd instead of firewall-cmd. In addition, --
remove-service will have to be changed to --remove-service-from-zone, and --permanent is not
necessary. For example, the command
firewall-cmd --permanent --zone=internal --remove-service=ipp-client
becomes
firewall-offline-cmd --zone=internal --remove-service-from-zone=ipp-client

Reserved Address DHCP
Sooner or later a compute node will have problems. To associate physical devices with IP
addresses one must configure DHCP to give out IP addresses based on hardware MAC
addresses.

The following procedure logs the MAC addresses of machines that receive an IP address over
DHCP in the order requested, then uses this information to set up DHCP to give each node the
same number each time.

To associate IP addresses with specific computers:

1. If it exists, delete the file /var/lib/dhcpd/dhcpd.leases. Whether or not it existed, create
it as a new file
touch /var/lib/dhcpd/dhcpd.leases

2. Power off all compute nodes
3. Power on the nodes in order
4. On the head node view the file /var/lib/dhcpd/dhcpd.leases. This should contain

entries with the IP and MAC addresses of recently connected compute nodes
5. Append entries to the very bottom of /etc/dhcp/dhcpd.conf for each node, associating

the node number with the order they appear in the file. For example:
host name01 {

hardware ethernet 00:04:23:c0:d5:5c;
fixed-address 192.168.1.101;

}
To automate this task, use the following commands, either run from the command line or
in a script. Tweak as necessary for your naming scheme:
#!/bin/sh
index=1
for macaddr in `cat /var/lib/dhcpd/dhcpd.leases | grep 'ethernet' | sed
's/.*hardware ethernet //'`; do

printf 'host name%.2d {\n\thardware ethernet %s\n\tfixed-address
192.168.1.1%.2d;\n}\n' "$index" "$macaddr" "$index"

3

index=`expr $index + 1`
done
This script will dump the output to the terminal where it can be copy/pasted into
dhcpd.conf. If you are running a terminal that doesn't support copy/paste you can
instead redirect the output.

6. Reboot the cluster and ensure that this change takes effect
As with all configuration changes in this article, make sure this revised dhcpd.conf file finds its
way into the head node kickstart file.

/etc/hosts
The /etc/hosts file is used to pair hostnames with IP addresses. The general format is:
XXX.XXX.XXX.XXX hostname.domain shorthostname

The shorthostname field is optional, but saves typing in many situations. Make sure that the first
line is as follows since it is required for the proper function of certain linux programs:
127.0.0.1 localhost.localdomain localhost

After this line will be a mapping for the head node's fully qualified domain name to its external IP
address:
123.45.67.89 name.university.edu name

The rest of the file will contain mappings for every node on the internal network. For example, a
cluster with a head node and two compute nodes will have a /etc/hosts as follows:
127.0.0.1 localhost.localdomain localhost
123.45.67.89 name.university.edu name
192.168.1.100 name00
192.168.1.101 name01
192.168.1.102 name02

Remember that 123.45.67.89 and 192.168.1.100 both correspond to the same machichine (the
head node), but over different network adapters. The hosts file should be identical on the head
node and compute nodes. As always, add these modifications to your kickstart files.

NFS
NFS (Network File System) is used to share files between the head node and the compute
nodes. We already configured it in the previous article, but this section goes more in depth. The
general format of the /etc/exports configuration file is:

/exportdir ipaddr/netmask(options)

To configure nfs on your cluster:

1. Modify /etc/exports on the head (or storage) node to share /home and /admin
/home 192.168.1.100/255.255.255.0(rw,sync,no_root_squash)
/admin 192.168.1.100/255.255.255.0(ro,sync,no_root_squash)
This allows read/write access to /home, and read only access to /admin.

2. Restart nfs on the head node
systemctl restart nfs

3. Import the shares on the compute nodes by appending the following lines to /etc/fstab:
name00:/home /home nfs rw,hard,intr 0 0
name00:/admin /admin nfs ro,hard,intr 0 0

4

name00 is the name of the head node, and /home is one of the shares defined in
/etc/exports on the head node. The second /home is the location to mount the share on
the compute node, and nfs lets Linux know that it should use nfs to mount the share.
The remaining items on the line are options that specify how the mountpoint is treated.

4. The shares will be mounted on the compute nodes automatically on boot up, but may be
mounted manually as follows:
mount /home
mount /admin

As always, once you have tested your configuration using one or two compute nodes, modify
both kickstart files so that you don’t have to manually apply it to all of them!

Internal Access - SSH and RSH
SSH (Secure SHell) and RSH (Remote SHell) both allow access between nodes. In most
situations when using Linux, ssh should be used because it uses encryption, making it much
more difficult for a malicious person to gain unauthorized access. Trusted networks like the
internal network in the cluster are exceptions to this rule because everything is under the
protective shelter of the head node. As such, security can and should be more relaxed. It’s all
one big machine, after all.

Since ssh was built with security in mind, connections require a heftier authentication overhead
than is the case for rsh. For this reason many people building high performance clusters that
use multiple nodes to run a given job will favor rsh for its low latency communication. However,
this can be a moot point. When using parallelization software such as OpenMPI, ssh or rsh is
only used to start jobs and OpenMPI handles the rest of the communication.

Many nerd wars have been fought about using ssh vs. rsh in a cluster. This isn’t the place to
duke them out, so we provide instructions for both ssh and rsh in this section. For the rest of this
article we’ll assume that you chose the ssh route, but with some minor modifications you can
make everything work with rsh as well.

SSH
By default, ssh requires a password in order to access another machine. However, it can be
configured to use rsa keys instead. By doing this, you will be able to ssh between machines
without using passwords.

This step is absolutely vital since most cluster software such as slurm (addressed later in this
article) assume passwordless ssh for communication. Additionally, cluster administration can be
a pain when constantly juggling passwords around. Once an administrator or user has access to
the head node, he or she should be able to access any other node within the cluster without
providing any additional authentication.

For each user that you desire to have passwordless ssh (this includes root):

1. Start by generating rsa keys. As the user for which you are setting up passwordless ssh,
execute the command
ssh-keygen
Accept the default location, ~/.ssh/id_rsa, and leave the passphrase empty. If you
supply a passphrase, they key will be encrypted and a passphrase will be necessary to
use it, which defeats the purpose.

5

2. Copy the contents of id_rsa.pub to authorized_keys
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

When you set up passwordless ssh for root, you will need to share /root/.ssh over nfs for the
compute nodes. Since /home was shared in the nfs section of this article, this does not need to
be done for regular users. Edit /etc/exports and make /root/.ssh a read only nfs share. On a
single compute node (for testing purposes) add /root/.ssh to /etc/fstab and mount it. You
should now be able to ssh as root in both directions between the head node and the compute
node.

You may have noticed something annoying. The first time you ssh’d from the head node to a
compute node as root, whether just now or earlier on in your cluster building, ssh complained
that the authenticity of that compute node couldn’t be established and prompted you to
continue. You said ‘yes’ and went on your merry way, and ssh hasn’t complained to you since.
However, now it’s upset again, and every time you ssh from a compute node back to the head
node you get something like this:
The authenticity of host 'name00 (192.168.1.100)' can't be established.
ECDSA key fingerprint is 01:23:45:67:89:ab:cd:ef:01:23:45:67:89:ab:cd:ef.
Are you sure you want to continue connecting (yes/no)? yes
Failed to add the host to the list of known hosts (/root/.ssh/known_hosts).

The reason adding the host fails (causing you to go through this dialog every time you connect)
is because the nfs share is read only. One way to fix this is to make it read/write, but that only
solves half the issue. With that solution, you’d still have to accept this message manually for
every node, which is unacceptable for scalability. Instead, edit /etc/ssh/ssh_config on all
nodes, and after the line that looks like Host *, insert the following:

StrictHostKeyChecking no
UserKnownHostsFile=/dev/null
LogLevel error

If you omit the log level modification, ssh will warn you every time you connect that it’s adding
the host to the nonexistent (/dev/null) list of known hosts. While this isn’t a major problem, it
can fill system logs with non-issues, making debugging future problems more difficult.

When configuring the root user, you may need to edit /etc/ssh/sshd.conf on all nodes to allow
passwordless root logins. Make sure it has the following values:
PermitRootLogin without-password
PubkeyAuthentication yes

Remember to continue adding these changes to your kickstart files!

RSH
If you wish to use rsh instead of ssh because it doesn’t needlessly encrypt communication, you
can do the following. On each node in the cluster,

1. Install rsh. On the head node you can do so using yum:
yum install rsh rsh-server
On the compute nodes you will have to add these to the packages section of the
kickstart file and reinstall.

2. Append the following lines to /etc/securetty
rsh
rexec
rsync
rlogin

6

3. Create the file /root/.rhosts where each line follows the pattern [HOSTNAME] root. For
example,
name00 root
name01 root
name02 root

4. Create the file /etc/hosts.equiv, in which each line is a hostname. For example,
name00
name01
name02

5. Enable and start the sockets
systemctl enable rsh.socket
systemctl enable rexec.socket
systemctl enable rlogin.socket
systemctl start rsh.socket
systemctl start rexec.socket
systemctl start rlogin.socket

6. You should now be able to access any computer from any other computer in the cluster
as any user (including root) by executing
$ rsh [HOSTNAME]

Add these changes to your kickstart files.

btools
Btools are a set of scripts used to automate the execution of commands and tasks across all
compute nodes in a cluster. While "atools" would be the commands themselves typed in by
some poor system administrator, and "ctools" (which actually exist) are part of a complex gui
cluster management suite, btools are short scripts that fit somewhere in the middle. The listing
of btools (bsh, bexec, bpush, bsync) and required support files (bhosts, bfiles) follows. These
should be located on the head node. Feel free to modify them as needed.

btool files
A few support files are required for the rest of the tools to function. Bhosts (Listing 1) contains
the list of hostnames of all compute nodes, allowing tools that perform operations across the
cluster to iterate over these hosts. Bfiles (Listing 2) contains the names of files that define the
users on the system. If a script copies these files from the head node to all compute nodes, any
users on the head node will be recognized on the compute nodes as well.

Listing 1. /usr/local/sbin/bhosts
name01
name02

Listing 2. /usr/local/sbin/bfiles
/etc/passwd
/etc/group
/etc/shadow
/etc/gshadow

btool commands
Bsh (Listing 3) loops through the hosts in bhosts, executing ssh <some command> for each.
Another tool, bexec (Listing 4), is similar to bsh in that it executes commands over all nodes, but

7

it executes them in parallel. While bsh waits for the first node to finish before moving on to the
second, bexec gets them all started, then collects and displays the logs for the operations.

Besides executing commands, it is often useful to copy files to all nodes. Bpush (Listing 5)
copies a file to all compute nodes. Similarly to bexec, it executes simultaneously, then displays
logs.

Finally, bsync (Listing 6) copies the files defined in bfiles to all compute nodes. This causes all
users on the head node to be users on the compute nodes as well.

Listing 3. /usr/local/sbin/bsh
#!/bin/sh
bsh - broadcast ssh
for host in `cat /usr/local/sbin/bhosts`; do

echo "*****${host}*****"
ssh ${host} $*

done

Listing 4. /usr/local/sbin/bexec
#!/bin/sh
bexec - broadcast ssh concurrently
The total number of nodes (determined dynamically)
nhost=0
Run the command on each node, logging output
for host in `cat /usr/local/sbin/bhosts`; do

logfile="/tmp/${host}.$$.log"
echo "***** ${host} *****" > $logfile
ssh ${host} $* >> $logfile &
pids[nhost]=$!
let nhost=nhost+1

done
Wait for all processes to finish
for i in `seq 0 $nhost`; do

wait ${pids[$i]}
done
Concatenate the results and cleanup
for host in `cat /usr/local/sbin/bhosts`; do

logfile="/tmp/${host}.$$.log"
cat $logfile
rm $logfile

done

Listing 5. /usr/local/sbin/bpush
#!/bin/sh
bpush - copy file(s) to nodes
The total number of nodes (determined dynamically)
nhost=0
Run the command on each node, logging output
for host in `cat /usr/local/sbin/bhosts`; do

logfile="/tmp/${host}.$$.log"
echo "***** ${host} *****" > $logfile
scp $1 ${host}:$2 >> $logfile &
pids[nhost]=$!
let nhost=nhost+1

done
Wait for all processes to finish
for i in `seq 0 $nhost`; do

wait ${pids[$i]}
done

8

Concatenate the results and cleanup
for host in `cat /usr/local/sbin/bhosts`; do

logfile="/tmp/${host}.$$.log"
cat $logfile
rm $logfile

done

Listing 6. /usr/local/sbin/bsync
#!/bin/sh
bsync - copy user files to nodes
for host in `cat /usr/local/sbin/bhosts`; do

echo "Synching ${host}"
for file in `cat /usr/local/sbin/bfiles`; do

echo "Copying ${file}"
rsync ${file} ${host}:${file}

done
done

Each of the executable btools (bsh, bexec, bpush, and bsync) needs to be made executable
before they can be run from the command line:
chmod +x /usr/local/sbin/tool_name

This collection of btools is useful for a variety of administrative tasks. For example, bsh can be
used to quickly run a command on all nodes, perhaps to check that they all have access to an
nfs share:
bsh ls /admin
A word of caution: bash doesn't pass some things such as redirection (>, <, |) as parameters to
executables. If you want to use bsh to echo "something" >> /some/file on each compute node
you will need quotes like this:
bsh 'echo "something" >> /some/file'
For tasks that take more computation time, such as installing software, bexec should be used.
For example, when we get a yum local repository set up, you can use bexec to install software
from it.
bexec yum -y install package_name
bpush is used to copy a file to all nodes. For example, if you want to test how a configuration
works on all compute nodes without putting it in a kickstart and reinstalling the cluster, simply
bpush it to all nodes and reload the relevant service
bsh mv /etc/service/service.conf /etc/service/service.conf.000
bpush /path/to/service.conf /etc/service/service.conf
bexec systemctl restart service
Finally, every time you add a user to the cluster by using useradd on the head node, make sure
to run bsync so that the new users have access to all nodes.
useradd user_name
passwd user_name
bsync

NTP
NTP is a protocol used by chrony to synchronize the time on a computer with some external
source. It should be set up on both the head node to synchronize with the outside world, and on
the compute nodes to synchronize with the head node. It is vital that the entire cluster is in
agreement on the time so there aren't any errors regarding timestamps on files shared over the
internal network.

The following procedure sets up the head node as a chrony server for the compute nodes:

9

1. Find a working timeserver (if your institution has its own, that's the best!) and add it to
/etc/chrony.conf on the head node in the following format:
server 192.43.244.18 #time.nist.gov
The comment at the end of the server line is purely optional but can be helpful when
looking at the file. If you have chosen more than one server you may add them in a
similar fashion.

2. Comment out the
server X.centos.pool.ntp.org iburst
lines on both the head node and compute nodes as they will interfere with the
configuration.

3. Allow your compute nodes to be clients of the head node’s ntp server by uncommenting
the line on the head node:
allow 192.168/16

4. Set a compute node to use the head node as its time server by adding the following line
to /etc/chrony.conf on the compute node.
server 192.168.1.100 # head node

5. Enable and start chrony on both head and compute nodes.
systemctl enable chronyd
systemctl start chronyd

6. After a few minutes have passed and NTP has had a chance to synchronize, execute
the following commands to test your ntp configuration.
chronyc tracking
chronyc sources -v
The -v option on the sources command prints cleverly formatted explanations for each
column in the output. Together, these commands print out debugging information about
the time server connection. They can be run on the head node to show info about your
external time server(s) or on a compute node to print info about the time server on the
head node.

We may be sounding like a broken record, but be sure to add all this to the kickstart files.

Yum Local Repository
Creating a local repository on the head node is useful for installing software that isn't available
from the installation media and installing updates to the compute nodes. While this could be
achieved in a pinch with traffic forwarding, that method not only poses a security risk but it also
bogs down the external network with redundant requests for the same software from each
compute node. Instead, it is possible to download some software packages to the head node
once, then set up the head node as a yum repository for the compute nodes to access.

The following procedure sets up the head node as a yum server and mirrors a repository onto
the head node:

1. Prepare a good spot to store a CentOS repository
mkdir -p /admin/software/repo/

2. Sync with a mirror.
rsync -azHhv --delete some_mirror.org::CentOS/7* /admin/software/repo/
Note the syntax for specifying the folder to be synchronized. If the folder is
rsync://mirrors.liquidweb.com/CentOS/7, it would be written as
mirrors.liquidweb.com::CentOS/7

10

This should use about 40G of disk space and take several hours. You can use the same
command to update your local copy of the repo. Updates will proceed much more
quickly than the first copy.

3. Edit the yum configuration files for both the head node and compute nodes in
/etc/yum.repos.d/ so that the head node will use itself as the update server, and the
compute nodes will use their nfs mount of /admin as the update server. Change the line
#baseurl=http://mirror.centos.org/centos/$releasever...
to
baseurl=file:/admin/software/repo/$releasever...
and comment out all mirrorlist lines. This can be automated using the following sed
commands:
sed -i.000 "s|#baseurl=http://mirror.centos.org/centos|baseurl=
file:/admin/software/repo|" /etc/yum.repos.d/*.repo
sed -i "s|mirrorlist|#mirrorlist|" /etc/yum.repos.d/*.repo
This should be performed on the head node and compute nodes (using bsh). It should
also happen in their kickstarts. If you have installed additional repos (such as epel on the
head node for ganglia) make sure not to modify their .repo files, otherwise yum will have
trouble finding those repos on your hard drive!

4. Update the head node and compute nodes using the head node as a software source
yum -y upgrade
bexec yum -y upgrade

Create your own repo
There are times when you will need to install software packages to your compute nodes that are
not available in the repo that you cloned, for example, ganglia from epel. In this case, it is not
efficient to clone the entire epel repository for only a few software packages. Thus, the possible
solutions are to either download the rpm files to the head node, bpush them to the compute
nodes, and bexec rpm -ivh /path/to/software.rpm, or to create your own specialized
repository and install them using yum.

To create your own repository:

1. Create a directory to house the repo in the head node
mkdir /admin/software/localrepo

2. Download some rpms to populate your local repo. For example, get the ganglia compute
node packages from epel, a third party repository.
cd /admin/software/localrepo
yum install epel-release
yumdownloader ganglia ganglia-gmond ganglia-gmetad libconfuse

3. Create the repo metadata
createrepo /admin/software/localrepo

4. Create /etc/yum.repos.d/local.repo containing the following:
[local]
name=CentOS local repo
baseurl=file:///admin/software/localrepo
enabled=1
gpgcheck=0
protect=1

5. Push local.repo to your compute nodes
bpush /etc/yum.repos.d/local.repo /etc/yum.repos.d/

6. Install the desired software on compute nodes
bexec yum -y install ganglia-gmond ganglia-gmetad

7. If you want to add software to the local repo, simply repeat steps 2 and 3. Note that yum
keeps a cache of available software, so you may need to run

11

bexec yum clean all
before you can install added software.

Be sure that the modifications to the files in /etc/yum.repos.d/ are added to your kickstart files.
The other changes occur in /admin, which remains unchanged during a reinstall.

Ganglia
It's important to be able to monitor the performance and activity of a cluster to identify nodes
that are having problems or to discover inefficient uses of resources. Ganglia is a cluster
monitoring software suite that reports the status of all the nodes in the cluster over http.

Before installing ganglia, you must have httpd installed and have the ganglia, ganglia-gmond,
ganglia-gmetad, and libconfuse packages available from the local repository.

To install Ganglia on the cluster:

1. Install httpd
yum install httpd
systemctl enable httpd
systemctl start httpd

2. On the head node, install ganglia-gmetad, ganglia-gmond, and ganglia-web
yum -y install ganglia ganglia-gmetad ganglia-gmond ganglia-web

3. On compute nodes, install ganglia-gmetad and ganglia-gmond
bexec yum -y install ganglia ganglia-gmetad ganglia-gmond

4. On the head node, backup and edit /etc/ganglia/gmond.conf such that
● In the cluster block, name is something you will recognize
● In the udp_send_channel block, mcast_join is commented out and the line host =

192.168.1.100 (internal ip of head node) is added
● In the udp_recev_channel block, mcast_join and bind are both commented out.

Push the modified gmond.conf file to all compute nodes
bpush /etc/ganglia/gmond.conf /etc/ganglia/

5. Enable and start gmetad and gmond
systemctl enable gmetad
systemctl start gmetad
systemctl enable gmond
systemctl start gmond
bexec systemctl enable gmetad
bexec systemctl start gmetad
bexec systemctl enable gmond
bexec systemctl start gmond

6. In /usr/share/ganglia/conf.php, between the <?php and ?> tags, add the line
$conf['gweb_confdir'] = "/usr/share/ganglia";

7. Edit /etc/httpd/conf.d/ganglia.conf such that it reflects the following:
Alias /ganglia /usr/share/ganglia

<Directory "/usr/share/ganglia">
 AllowOverride All
 Require all granted
</Directory>
And restart httpd
systemctl restart httpd

8. Monitor your cluster from a web browser by going to http://name.university.edu/ganglia.
Be sure to update your kickstart files.

12

SLURM
In a cluster environment, multiple users share resources. Batch queueing systems run jobs on
appropriate hardware resources and queue jobs when resources are unavailable. Some
examples of batch queueing systems include PBS, Torque/Maui, SGE (now Oracle Grid
Engine), and SLURM.

SLURM (Simple Linux Utility for Resource Management) is a tool for executing commands on
available compute nodes. SLURM uses an authentication agent called munge.

To configure and install SLURM and munge:

1. On the head node, add slurm and munge users
groupadd munge
useradd -m -d /var/lib/munge -g munge -s /sbin/nologin munge
groupadd slurm
useradd -m -d /var/lib/slurm -g slurm -s /bin/bash slurm
And sync them to the compute nodes
bsync

2. Slurm uses an authentication agent called munge, which is available from the epel
repository.
yum -y install munge munge-libs munge-devel
Munge must be installed to the compute nodes as well. See the section titled Yum Local
Repository for details, then perform the installation using bexec.

3. Generate a key to be used by munge across the cluster
dd if=/dev/urandom bs=1 count=1024 > /etc/munge/munge.key
chown munge:munge /etc/munge/munge.key
chmod 400 /etc/munge/munge.key
The same key must be in the /etc/munge/ directory on all compute nodes. While it is
possible to propagate it to all of them, it can be more convenient (vital for reinstallations,
in fact) to make the entire directory a read only nfs share. See the section above on nfs
for details.

4. Enable and start the munge service on all nodes. Test that munge is installed correctly.
munge -n | ssh name01 unmunge

5. On the head node, install the packages necessary to build slurm
yum -y install rpm-build gcc openssl openssl-devel pam-devel numactl numactl-
devel hwloc hwloc-devel lua lua-devel readline-devel rrdtool-devel ncurses-
devel gtk2-devel man2html libibmad libibumad perl-Switch perl-ExtUtils-
MakeMaker mariadb-server mariadb-devel

6. On the head node, download and build the latest slurm distribution. In the following
commands, substitute the latest version of slurm for VERSION. At the time of writing this
article, the latest version is 16.05.7.
cd /tmp
curl -O https://www.schedmd.com/downloads/latest/slurm-VERSION.tar.bz2
rpmbuild -ta slurm-VERSION.tar.bz2

7. Copy the built rpms to your local repository and update its metadata
cp /root/rpmbuild/RPMS/x86_64/*.rpm /admin/software/localrepo
createrepo /admin/software/localrepo
Make yum on all machines aware that this change occurred
yum -y clean all
bexec yum -y clean all

8. On the all nodes, install the following packages from the local repo
bexec yum -y install slurm slurm-devel slurm-munge slurm-perlapi slurm-
plugins slurm-sjobexit slurm-sjstat slurm-seff
And on the head node only, install the slurm database
yum -y install slurm-slurmdbd slurm-sql

13

9. On all nodes, create and set permissions on slurm directories and log files
mkdir /var/spool/slurmctld /var/log/slurm
chown slurm: /var/spool/slurmctld /var/log/slurm
chmod 755 /var/spool/slurmctld /var/log/slurm
touch /var/log/slurm/slurmctld.log
chown slurm: /var/log/slurm/slurmctld.log

10. On the head node, create the configuration file /etc/slurm/slurm.conf
ControlMachine=name
ReturnToService=1
SlurmUser=slurm
StateSaveLocation=/var/spool/slurmctld
LOGGING AND ACCOUNTING
ClusterName=cluster
SlurmctldLogFile=/var/log/slurm/slurmctld.log
SlurmdLogFile=/var/log/slurm/slurmd.log
COMPUTE NODES
NodeName=name[01-99] CPUs=1 State=UNKNOWN
PartitionName=debug Nodes=name[01-99] Default=YES MaxTime=INFINITE State=UP
This file must be the same across all nodes. To ensure it is, make the /etc/slurm
directory a nfs share like you did for munge. Alternatively, you can place this file in
/home/export/slurm (which already is a nfs share) and symbolically link it to /etc/slurm
on all nodes
ln -s /home/export/slurm/slurm.conf /etc/slurm/slurm.conf
bsh ln -s /home/export/slurm/slurm.conf /etc/slurm/slurm.conf
We didn't use this trick when installing munge because munge checks that it's reading a
regular file rather than a symbolic link.

11. On the head node, enable and start slurmctld
systemctl enable slurmctld
systemctl start slurmctld
And on the compute nodes, enable and start slurmd
bsh systemctl enable slurmd
bsh systemctl start slurmd

12. Test the system. First submit an interactive job on one node:
$ srun /bin/hostname
Then submit a batch job. First, in a home directory create the file job.sh
#!/bin/bash
sleep 10
echo “Hello, World!”
And execute the file using the command
$ sbatch job.sh
Before 10 seconds pass (the amount of time our sample job takes to run), check the job
queue to make sure something’s running
$ squeue
Which should display something like this
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 1 debug job.sh user R 0:07 1 name01
Finally, if /home is nfs mounted read/write, you should see the job’s output file slurm-
1.out in your current directory with the contents
Hello, World!

Next Steps
At this point the cluster is operational. You can run jobs on nodes using SLURM and monitor the
load using Ganglia. You also have many tools and tricks for performing administrative tasks
ranging from adding users to reinstalling nodes. A few things remain, most notably installing

14

application specific software, adding parallelization libraries like OpenMPI for running one job
over multiple nodes, and employing standard administrative good practices.

When installing application software to a single directory (for example, /usr/local/app_name/),
install it on the head node. Then share it to the compute nodes by moving the entire installation
to /home/export and symbolically linking it to the install location:
mv /usr/local/app_name /home/export/app_name
ln -s /home/export/app_name /usr/local/app_name
bsh ln -s /home/export/app_name /usr/local/app_name

When installing libraries, they are often in the standard repositories that you cloned to the head
node when creating a local repository. This is the case with OpenMPI. Installation is as easy as
executing a yum install:
yum -y install openmpi openmpi-devel
bexec yum -y install openmpi openmpi-devel
If you need a library that is not included in the standard repositories but is still packaged for
CentOS, you can download it to your local repo following the procedure discussed in the Create
your own repo section of this article. If the library isn't packaged at all for CentOS (perhaps you
compiled it from source) you can still bpush it to the compute nodes:
bpush /path/to/library.so /path/to/library.so

To prevent a computational Tragedy of the Commons, you will want to protect the communal
resources, including the head node's disk and CPU. To keep a user from hogging the entire
home partition, enforce a quota on disk usage. To prevent long jobs from running on the head
node (that's what compute nodes are for), you can write a "reaper" daemon that checks for long
running user processes and kills them.

Another useful tool to have in place is the ability to send email from the cluster. For example,
many RAID devices have corresponding software that will send an email when a disk goes
down. In order for this email to make its way to your inbox, the cluster must be configured to
forward the email to the correct recipient(s).

While outside the scope of this article, it's important for a production cluster to be backed up
regularly. You'll want a cron job that tars up the entire home directory and transfers it over the
network to a backup machine, preferably in a different building.

Conclusion
Computer clusters are important tools for massively parallelizable tasks (high performance
computing) and for running many jobs concurrently (high throughput computing). All too often
the setup and maintenance of clusters is left to specialists, or even worse, to complex “magical”
configuration software. In the last three articles we wrote some complex configuration scripts
ourselves, but we understand each step so that the process is stripped of all magic.

The resulting cluster is flexible enough to be used for many different computationally intensive
problems. Furthermore, because of the redundancy built into the hardware and the ease of
reinstalling compute nodes, the cluster is reliable as well. Our production cluster has been in
operation for over 10 years, has seen multiple hardware and software upgrades, and still
functions reliably.

15

In a few years you may decide to upgrade by adding some shiny new compute nodes, which
won’t be a problem since all you will have to do is tweak your kickstart file to take advantage of
the new capacities or capabilities. Or perhaps you will want to upgrade to the latest operating
system version. Since you used standard technologies and methodologies to build your own
cluster (BYOC), future transitions should proceed as smoothly as the original installation!

