
MASS JAVA Benchmarking

Winter 2023 Term Report

Anirudh Potturi

In Partial Fulfillment of the Requirements

For the Degree of

Masters of Science

Under Guidance of Dr. Munehiro Fukuda

University of Washington

©March, 2023

Anirudh Potturi

https://orcid.org/0000-0002-9270-9628

https://orcid.org/0000-0002-9270-9628

2

Contents

List of Figures 4

1 Introduction 5

2 Benchmark Applications 6

2.1 Closest Pair of Points . 6

2.2 KDTree based Range Search . 6

2.3 Convex Hull . 8

2.4 Largest Empty Circle . 9

2.5 Euclidean Shortest Path . 9

3 International Conference on Agents and Artifial Intelligence 2023 11

4 Tool Development and Application Fixes 13

4.1 Nodes XML File Generator . 13

4.2 Benchmark Runner Application for MASS Java 13

4.3 Convex Hull . 14

4.4 Largest Empty Circle . 14

5 Results and Analysis 15

5.1 KDTree Based Range Search . 15

5.2 Closest Pair of Points . 16

References 17

Appendices 18

3

4

LIST OF FIGURES

2.1 Neighborhood Patterns [1] . 7

2.2 Closest Pair of Points . 7

2.3 Range Search Data Points . 8

2.4 KDTree based Range Search . 8

2.5 Convex Hull [2] . 9

2.6 Largest Empty Circle [3] . 10

2.7 Euclidean Shortest Path [4] . 10

Chapter 1

Introduction

The purpose of this paper is to provide a summary of the work performed in the

Winter Quarter of 2023. This quarter’s goal was to bring together applications in

Computational Geometry together and perform additional benchmarkings. A total

of Five applications are lined up. They are Closest Pair of Points, Largest Empty

Circles, Point Location, Range Search and Euclidean Shortest Space. For each of these

applications, we gathered the work of former and current students, some of which

already existed within the MASS Java Application Repository at the beginning of this

Quarter. The role of this quarter was to focus on setting up the benchmark executions

of these applications. This includes rigorous testing of each application with 1 node

and up to 24 nodes. Performance of the MASS library is tested using different sizes

of data sets over multiple node configurations. Each test is conducted 3 times and

finally used to compute average times. Lastly, upon completion of previous quarter’s

work, the paper submitted to the International Conference on Agents and Artificial

Intelligence (ICAART) 2023 conference was accepted into the publishing and the paper

was to be presented in Lisbon, Portugal in the month of February.

Chapter 2

Benchmark Applications

The following applications have been lined up towards a submission to The Journal of

Supercomputing. All applications have been developed by former or current students,

each using MapReduce, Apache Spark and MASS Java libraries. This section intro-

duces the applications and explains the working of the MASS versions of each of the

application.

2.1 Closest Pair of Points

The closest pair of points application was developed using one of the agent auto migra-

tion feature built into MASS Java Library. In this application, the data is distributed

over a continuous geometric space and agents start migrating from the data points.

This application tests the MigratePropogateRipple functionality in MASS where agents

migrate to the Von Neumann and Moore neighboring places (as seen in Fig. 2.1) by

spawning new child agents. The migration stops when agents originating from two

different points collide with one another (as seen in Fig. 2.2).

2.2 KDTree based Range Search

This application is based on a multi dimensional space over which data is distributed

(from Fig. 2.3). The points are then split into two subsets each of roughly the same

size. While one subset contains all the points smaller than the splitting value, the

other contains the points larger than the splitting value. This is a recursive process in

which data is split into two halves at the median. Through this process of division,

7

Figure 2.1: Neighborhood Patterns [1]

Figure 2.2: Closest Pair of Points

From Fig. 2.4 a tree is formed with a left and a right branch where nodes of the tree

represent the data. The MigratePropogateTree method from MASS Library is used to

automate the agent migration over this tree. The agents work towards finding all the

points that exists within a user specified range.

8

Figure 2.3: Range Search Data Points

Figure 2.4: KDTree based Range Search

2.3 Convex Hull

This application is a 2-Dimensional space based problem wherein a set of points are

distributed. The goal is to identify the smallest convex polygon that encloses all the

data points. The spatial features in MASS are leveraged to apply agents to squeeze in-

wards, starting from the boundary of the grid. From Fig. 2.5 This way, as agents move

inwards, they identify the outermost points, thus identifying candidate points. Cur-

rently, no features exist in the MASS library that support this style of agent migration.

9

Figure 2.5: Convex Hull [2]

2.4 Largest Empty Circle

Similar to a Convex Hull or Voronoi Diagram problem, the Largest Empty Circle

problem is defines over a set of points. The goal of this problem is to identify the largest

circle that contains the maximum number of points from the data set (see Fig. 2.6).

This problem is based on Voronoi Diagram, a problem that has been explored by the

DSLab. Given the Voronoi vertices, one can simply identify the largest circle around

the vertices. With the use of features in MASS Java like SpaceAgents and SpacePlace

components, The voronoi site and vertex points are mapped to places. Agents explore

and identify the farthes pair of the data point pairs by migrating to Moore and Von

Neumann neighbor places.

2.5 Euclidean Shortest Path

Given a 2-Dimensional area, a distribution of objects are scattered that act as obstacles.

The motivation behind the application is to identify the shortest path from a source

to destination point. What makes this application intuitive using MASS is through

the use of Point Location, another Computational Geometry Application is used to

find the area of the said obstacles. Next, agents propogate from the source in the Von

Neumann and Moore neighbor patterns. From Fig. 2.7 On encountering an obstacle

10

Figure 2.6: Largest Empty Circle [3]

like the red box, agents move along the edge of the obstacle, thus making their way

finally reaching the destination vertex.

Figure 2.7: Euclidean Shortest Path [4]

Chapter 3

International Conference on Agents and Artifial Intelligence

2023

The ICAART 2023 conference took place in Lisbon, Portugal this year. I had the

opportunity to travel to the conference and present our work. The conference took

place from February 22nd to the 24th, 2023. With the motivation of our work driven

towards relieving a programmer from describing fine-grained code to describe agents,

the results presented were in favor. We were able to show that MASS in fact requires

less programming when compared to it’s competitor Agent Based Modelling libraries

like Repast Simphony. We were also able to compare and contrast MASS with more

libraries like NetLogo, RepastHPC and FLAME for use in the field of Data Sciences

and Big Data.

We had the opportunity to introduce the MASS Library to researchers from all

over the world, it’s functionality, technical specifications and strengths. We explained

how we used the library in developing application like Breadth First Search, Tringle

Counting, KDTree Based Range Search and Closest Pair of Points to name a few.

We were able to introduce the Automated Agent Migration Techniques introduced

into MASS Library while also introducing the use cases of these techniques. By explain-

ing the use of one such migration technique in an application called TriangleCounting,

we demonstrated the ease of developing an application that leverages the in built fea-

ture. A user need not describe the pattern of migration of an agent to count the number

of triangles in a graph.

We were also able to show that with the improvements introduces in MASS like ad-

12

dition of features to improve Agent and Spatial Management, Support for tree construc-

tion, Reduction of thread control and inter-cluster communication overheads helped in

supporting application while working with large data sets.

By demonstrating the use of all eight agent migration techniques in the applications

we worked with for this research paper, we were also able to compare the programmabil-

ity of these applications using a library like Repast Simphony. In essence, we contrasted

the programmability of Legacy MASS vs New MASS vs Repast simphony. This further

solidified our motivation since New MASS had major desirable metrics programmers

would look for.

Towards the end, we were able to conclude that Automation of Agent Migration

enhances the execution performance and also improves programmabilty [5]. We did

this by comparing the execution performance and lines of code metrics of what we

term as Legacy MASS and New MASS for each of the applications.

Chapter 4

Tool Development and Application Fixes

4.1 Nodes XML File Generator

An additional yet useful tool that will be helpful is the NodeFileGen Tool. The tool was

initially not part of the plan but seemed to be useful for new users to MASS who may

not have complete knowledge of how to setup their nodes.xml file. MASS application

users and developers require this file to specify the nodes/machines that will run the

application. It will be used to list the master and worker nodes. In essence, it is a file

that lists all the machines in the cluster. The principle of this tool is simple. When

called from withing a MASS Application folder, the tool will generate a nodes.xml file

for the application instantly. The user passes their Username which in our case is the

Netid and their assigned port number. The will pass a thrid argument which is the

total number of nodes they require in their cluster. This includes the master node

as well. By default, the master node is decided as ’cssmpi1h.uwb.edu’ by the tool.

However, users may modify the code in the tool as per their requirements. This tool

utilizes the Javax XML Package to generate the XML document.

4.2 Benchmark Runner Application for MASS Java

The Benchmark Runner Application for MASS Java is a tool that will automate the

execution of all applications that have been lined up. The application will work on

the principle of multi-threading. Threads will be created based on the number of

applications to be run at the same time. A thread will be responsible for running a

shell script which in turn automates the execution of an application. The Benchmark

14

runner application is currently under development. The complete application will be

ready when all the benchmark applications have been thoroughly tested and their run

scripts are prepared. This quarter, work has progressed towards setting up the scripts

for applications that were available at the start. With changes in applications used in

this automated execution tool, the new applications are undergoing testing.

Although the plan is to keep this tool separate from the NodeFileGen Tool, similar

logic from the tool can be integrated into this benchmark runner tool as well for

automation of all XML file generations before beginning benchmark executions. With

the structure of this tool ready, completion of the shell scripts will conclude our work

on this tool.

4.3 Convex Hull

This application requires the creation of a very large number of places. Depending on

the data, we must create an N x N grid where N is the maximum value from both X and

Y coordinate lists. When working with a data set with 500,000 and 1,000,000 points,

the maximum of these coordinates is large enough that we would need 100,000,000

places. This is not a very practical option. Instead we had to choose a data set with a

limit on the maximum of the values. Another issue that arose was with agent migration

in the application. The agents at all times would try to migrate to the same place.

This meant that the migration was not taking place as intended. With these issues

fixed, the application is ready for testing. However, the creation of a large number of

places is still time consuming.

4.4 Largest Empty Circle

The current application of Largest empty circles (MASS) does not get instantiated

with the data points as intended. The file passed as input is not being processed into

an array of data points.

Chapter 5

Results and Analysis

With benchmarks being performed of each application in both MASS Java and MapRe-

duce, while some also in Apache Spark, this section highlights the execution perfor-

mance of applications developed using MASS Java.

5.1 KDTree Based Range Search

The KDTree Based Range Search performance results were unforeseen during the

KDTree Construction times. Although our previous work suggested that the Dis-

tributed KDTree construction times were not reasonable, we were not expecting to see

such high wait times for the tree construction. From Table 5.1, it is clear that at no

point does the distributed tree construction improve performance. On the contrary,

the automated agent migration performance has shown impressive results. Generally,

we would expect the performance improvement to level down at some point as we in-

crease the number of computing nodes. In the case of this application, we saw constant

improvement of the execution performance of the Agent Migration across the KDTree.

Table 5.1: Range Search Benchmark Results - Distributed KDTree Construction (time
in seconds)

Number of worker nodes 500,000 points 1,000,000 points

1 7.29 15.561
2 1603.236 -
4 2560.58 5259.769
8 3881.647 8111.904
12 3590.451 7586.234
16 3903.864 8105.958
24 4654.77 9876.906

It is important to mention that two computing nodes together always resulted in a

16

Table 5.2: Range Search Benchmark Results - Agent Migration (time in seconds)

Number of worker nodes 500,000 points 1,000,000 points

1 25.119 86.929
2 19.375 -
4 11.353 71.727
8 15.533 118.155
12 9.103 26.564
16 10.228 22.73
24 12.124 23.396

deadlocks situation upon investigating the thread dumps. With the use of logging and

the thread dumps, it was revealed that the program would not make it past through

the tree construction after constructing nearly 60 percent of the tree. The threads

would enter into waiting state and never exit.

5.2 Closest Pair of Points

The benchmark results of the Closest Pair of Points application are complete in all

three versions. With the work done on Continuous space in MASS Core Library, the

handling of such large sets of data was efficient when compared to that of Range Search.

Table 5.3: Closest Pair of Points Benchmark Results (time in seconds)

Number of worker nodes 500,000 points 1,000,000 points

1 282.17 931.98
2 84.10 268.25
4 33.14 81.96
8 22.57 39.53
12 25.30 34.73
16 37.01 47.56
24 52.64 53.59

17

REFERENCES

[1] V. Mohan, “Automated agent migration over structured data.” UWMaster’s White

Paper, 2022.

[2] J. L. Jaron Wang, Shaun Stangler, “Convex hull css 534.” UW Master’s Level

Assignment Report, 2022.

[3] S. Paronyan, “Agent-based computational geometry.” UW Master’s White Paper,

2021.

[4] R. Ng, “Evaluation of euclidean shortest path, voronoi digram and line segement

intersection using mass, spark, and mapreduce.” UW Master’s Term Report, 2022.

[5] V. Mohan, A. Potturi, and M. Fukuda, “Automated agent migration over dis-

tributed data structures,” in In Proceedings of the 15th International Conference

on Agents and Artificial Intelligence - Volume 1.

18

APPENDICES

	List of Figures
	Introduction
	Benchmark Applications
	Closest Pair of Points
	KDTree based Range Search
	Convex Hull
	Largest Empty Circle
	Euclidean Shortest Path

	International Conference on Agents and Artifial Intelligence 2023
	Tool Development and Application Fixes
	Nodes XML File Generator
	Benchmark Runner Application for MASS Java
	Convex Hull
	Largest Empty Circle

	Results and Analysis
	KDTree Based Range Search
	Closest Pair of Points

	References
	Appendices

